
Penthera 302: Android
SDK Beyond the Basics

Android SDK 5.0

January 17, 2022
Advanced development documentation for Penthera Android SDK 5.0. Covers intermediate and ad-

vanced topics, as well as extended SDK features.

Copyright © 2022 Penthera Partners

CONFIDENTIAL - Licensed Use Only

Table of Contents
Intermediate Topics .. 3

Configure Device-level Download Behaviors: Android .. 3
Notification of Account & Asset Permissions Violations in Android 5

Download Ancillary Files: Android ... 6
Enable/Disable Other Devices: Android ... 7
Push Notifications: Android ... 8

IPushRegistrationObserver: Android ... 12
Fixing Firebase Cloud Messaging errors: Android .. 12

Availability Windows for Assets: Android ... 13
Mark an Asset as Expired: Android ... 15

Error handling for MIME types .. 16
MIME type error behavior ... 16
Configuring MIME type settings .. 17

Advanced Topics ... 18
Upgrading the SDK: Android ... 18

Database Versioning: Android .. 18
Upgrading to Penthera 4.0 Android SDK ... 18

Observing and Interacting with Asset Creation & Queuing .. 20
Observing Manifest Parsing Results with ISegmentedAssetFromParserObserver:
Android ... 20
Observing Queue Additions with IQueuedAssetPermissionObserver: Android 21
Observing or Modifying Manifest Parsing with IManifestParserObserver: Android 21
Resolution-based Manifest Filtering .. 24
Custom Manifest Filtering ... 24

Android occasionally changes the proxy port ... 25
Using Cursors to Access Assets ... 25

DRM Setup: Android .. 28
Retrieve and Persist Widevine Licenses: Android ... 28
Playout with Widevine Persisted License: Android ... 30
Errors with DRM License Durations on Android 8 ... 31

Extended Features .. 33
FastPlay: Android .. 33
Auto-download .. 34

Implement the IPlaylistAssetProvider .. 35
Register a Playlist .. 36
Grow a Playlist .. 37

Advertising Support: Android .. 37
What Next? ... 39

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 2 CONFIDENTIAL - For Licensed Use Only

Intermediate Topics

Configure Device-level Download Behaviors: Android
The SDK obeys several device-level behavioral settings. You can access and configure these settings
through the ISettings interface. Notice that the default values are very conservative; for most apps,
you’ll want to tune these to more aggressive values.

Configuration Parameters

• headroom Storage capacity that the SDK will leave available on the device. If there’s less than this
amount of free space on the device, the SDK will not download (default: 1GB)

• maxStorageAllowed Maximum disk space the SDK will ever use on the device. If the SDK is stor-
ing this or more downloaded data on the device, it won’t download (default 5GB).
This diagram illustrates the relationship between maxStorageAllowed and headroom parameters.
The Engine will always preserve a minimum free space on disk (“headroom”). In the first scenario the
device has ample total available storage, so the SDK storage would be capped only by its maxStor-
ageAllowed. In the second scenario, the device is beginning to fill up with other apps and is running
low on available storage, so the SDK headroom requirement is restricting storage usage by the SDK.
In the second scenario the SDK is no longer allowed to reach its maxStorageAllowed due to a lack
of total available storage on the device.

• batteryThreshold Defines the fractional battery charge level below which SDK suspends down-
loading. A value of 0 (completely discharged) means “no limit.” A value greater than 1 (completely
charged) means “only download when charging.” (default: 0.5, meaning 50%)

• cellularDataQuota How many MB/month the SDK can download over cellular. A value of 0
means “don’t download any bytes over cellular.” A negative value indicates an unlimited quota. (de-
fault: 100MB). The SDK divides this number into four and enforces the smaller number on a week-to-
week basis.

• destinationPath This is an additional relative path added to the SDK root download location. The
SDK will store all downloaded content here. By default, the SDK stores all downloads in the the SDK
root directory, /virtuoso/media/, under appropriate sub-directories. Note that by default this path is

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 3 CONFIDENTIAL - For Licensed Use Only

within the app private file space on the first "external" file system (which in many cases is not actually
"external" storage, but is called so by Android). If this destination path is defined to an absolute path
then the SDK will try to download all content to that path. The app is responsible for ensuring external
write permission is available, the download engine will report back a blocked state if it cannot write
due to permissions.

NOTE
It can be difficult for the SDK to estimate file sizes without knowing the file sizes ahead
of time, especially when content is not encoded with a constant bitrate. The initial esti-
mated file size for videos is based on the selected bitrate to download and the duration
of the asset. Once download starts, the SDK will look at the existing downloaded seg-
ments and create an "average segment size" for each segment type (audio, video,
etc.) and then recalculate the estimated total based on the number of segments multi-
plied by the average downloaded segment size. Naturally, with this approach, the esti-
mated size will become more accurate over time.

LOW BATTERY IMPACTS VARIOUS FEATURES
The SDK battery threshold value in ISettings impacts the SDK download behavior,
but device battery level impacts other SDK behaviors which are not controllable by the
SDK's ISettings value. Various functions of the SDK are implemented as Android
OS Workmanager tasks which are configured not to run whenever "battery is low". The
battery level which Android OS Workmanager considers "low" is commonly set to 20%
and is not under control by the SDK. Thus, independent of the SDK ISettings value
you may see the following SDK functions delayed whenever the OS determines the de-
vice is in a low-battery state:

• Execution of Expiry actions
For assets with SDK expiry values the SDK will still prevent playback of expired as-
sets, but the automatic removal of the expired asset files from disk may be delayed if
device battery is low.

• Automatic refresh of Ads
• Timed refreshes of DRM (refreshes requested manually by your code will still occur)

Retrieve a parameter setting
Current values for settings can be retrieved from the ISettings instance:

ISettings settings = mVirtuoso.getSettings();
long maxStorage = settings.getMaxStorageAllowed();

Override parameter settings
The ISettings instance also allows to override defaults. Remember to call save() to cause setting
changes to persist.

settings.setMaxStorageAllowed(1024)
 .setHeadroom(200)
 .setBatteryThreshold(0.5);

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 4 CONFIDENTIAL - For Licensed Use Only

Reset a setting to the SDK default or to that provided by your Penthera Cloud
configuration
ISettings provides reset methods to restore settings to SDK defaults. For example:

settings.resetMaxStorageAllowed();

Notification of Account & Asset Permissions Violations in Android
The preferred mechanism for receiving notification about issues occurring during the download of an
asset is the IQueueObserver, as discussed in IQueueObserver: Android. If for any reason you cannot
use the IQueueObserver approach, similar information can be found by registering to receive the re-
lated Broadcasts.

To use the less-preferred mechanism of Broadcasts to receive and act upon notification when some of
the typical account-wide and asset-specific download permissions have been violated:

1. Ensure that your registered Broadcast receiver is configured in AndroidManifest.xml with an intent-
filter allowing the NOTIFICATION_DOWNLOAD_STOPPED action. See Using Broadcast Receivers:
Android for more details.

com.penthera.virtuososdk.provider.sdkdemo.NOTIFICATION_DOWNLOAD_STOPPED

2. In your Broadcast receiver, when it receives the notification intent, look into the action to determine
it is related to "download stopped":

String myAction = intent.getAction();
if
(myAction.endsWith(Common.Notifications.INTENT_NOTIFICATION_DOWNLOAD_STOP
PED))
{
 //handle download stopped by reason (see sample below)
}

3. Once the action is determined to be INTENT_NOTIFICATION_DOWNLOAD_STOPPED, take ap-
propriate steps based on the DownloadStopReason contained in the intent extras:

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 5 CONFIDENTIAL - For Licensed Use Only

Bundle myExtras = intent.getExtras();
if (null != myExtras && myExtras.containsKey(
Common.Notifications.EXTRA_NOTIFICATION_DOWNLOAD_STOP_REASON))
{
 //extras should contain reason codes
 int stopReason =
myExtras.getInt(Common.Notifications.EXTRA_NOTIFICATION_DOWNLOAD_STOP_REA
SON);
 switch (stopReason)
 {
 case
Common.Notifications.DownloadStopReason.ERROR_DOWNLOAD_DENIED_ACCOUNT:
 //violated the Max Downloads per Account Rule
 break;

 case
Common.Notifications.DownloadStopReason.ERROR_DOWNLOAD_DENIED_ASSETS:
 //violated the Max Downloads per Asset Rule
 break;

 case
Common.Notifications.DownloadStopReason.BLOCKED_DOWNLOAD_DENIED_COPIES:
 //violated the Max Copies of Asset rule
 break;

 case
Common.Notifications.DownloadStopReason.DENIED_MAX_DEVICE_DOWNLOADS:
 //violated the Max Permitted Downloads on Device Rule
 break;
 }
}

NOTE
You may also be interested in receiving Common.Notifications.INTENT_NOTI-
FICATION_DOWNLOADS_PAUSED events.

Download Ancillary Files: Android
The Penthera SDK provides the ability to download arbitrary additional files, which are managed by the
SDK within the same lifecycle of the related asset. When the asset is later removed from the user de-
vice, the SDK will also automatically clean up the related ancillary files.

Below is an example where a DASH asset is defined, including providing URLs, descriptions, and tags
for both thumbnail and poster images. When the asset builder's .build() method is called, the SDK
will manage retrieving the related ancillary files along with the manifest and the audio and video files
appropriate to the desired bitrates.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 6 CONFIDENTIAL - For Licensed Use Only

MPDAssetBuilder mpdAsset = new MPDAssetBuilder()
 .assetObserver(observer)
 .manifestUrl(new URL(url))
 .desiredAudioBitrate(0)
 .desiredVideoBitrate(0)
 .addToQueue(true)
 .assetId(remoteId);

mpdAsset.withAncillaryFiles(
 Arrays.asList(
 new AncillaryFile[]{

 new AncillaryFile(new URL("http://yourserver.s3.amazonaws.com/
somepath/0001thumb.jpg"),"My Movie Thumbnail Description", new String[]
{"tag1","tag2","thumbnail"}),

 new AncillaryFile(new URL("http://yourserver.s3.amazonaws.com/
somepath/0001poster.jpg"),"My Movie Poster Description", new String[]
{"tag1","tag2","poster"})
 }
)
);

assetManager.createMPDSegmentedAssetAsync(mpdAsset.build());

Once the SDK has completed download of the asset, the ancillary files can be accessed from the asset
instance. You could access all the ancillaries at once with getAncillaryFiles(context), but no-
tice in the example below that the tags used when declaring the ancillary files can be used to easily
retrieve a specific ancillary file. Tags could be used to distinguish thumbnails from poster images, to
mark ancillary images in various different languages, or for any other purpose.

List<IIdentifier> ls = assetManager.get(myAssetId);
ISegmentedAsset myDashAsset = (ISegmentedAsset) ls.get(0);

List<AncillaryFile> thumbnails =
myDashAsset.getAncillaryFilesForTag(context, "thumbnail");
AncillaryFile myThumb = thumbnails.get(0);

File myThumbImage = new File(myThumb.localPath);
String myThumbText = myThumb.description;

Enable/Disable Other Devices: Android
In addition to startup and shutdown of the Virtuoso engine on a given device, you also have the option
of enabling and disabling the download capability on a device. For example, if you use the Penthera
Cloud setting to limit the number of download-enabled devices a user is allowed on their account, you
may also want to provide the ability for your users to choose which of their devices is enabled for down-
load at any given time. To support this, the SDK can change the enable/disable setting for the local de-
vice, or for any other device associated with the user’s account. The Penthera Cloud manages which
devices are download-enabled, and enforces the global “max download-enabled devices per user” poli-
cy.

The example below shows how to retrieve the listing of User devices and change the download setting
on one of them. Notice that because the Penthera Cloud is involved in enforcing your business rules,
this code for enabling and disabling devices behaves differently if the local device is offline or not au-
thenticated when the request is made.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 7 CONFIDENTIAL - For Licensed Use Only

String anExternalIdToMatch = “AN_EXTERNAL_ID”; //device we wish to change

IBackplane backplane = mVirtuoso.getBackplane();
backplane.getDevices(new IBackplaneDevicesObserver () {
 @Override
 public void backplaneDevicesComplete(IBackplaneDevice[] aDevices) {
 //an empty array is received if there is no active connection or
the user is not authenticated to the Penthera Cloud
 for(IBackplaneDevice device : aDevices) {
 //check the device
 if(anExternalIdToMatch.equals(device.externalId()) {
 backplane.changeDownloadEnablement(true,device)
 }
 }
 }
});

TIP
If a request to enable or disable a remote device is made while the remote device is
offline, the state change is still recorded in the Penthera Cloud and will propagate to
the remote device when it syncs with the Penthera Cloud. In general the impact on a
remote device may experience various delays if the remote device is offline, if syncing
is delayed for any reason, or if push notifications are delayed. As long as the device is
eventually brought online and the SDK is running, it will eventually receive the state
change.

Push Notifications: Android
While not required, we do recommend integration of push notification messaging as it can produce the
most timely execution of some Penthera features. Note that push notifications are not used by Penthera
to pop up user messages in your mobile app UI; the SDK uses push notifications to receive internal
messages from the Penthera Cloud.

The Penthera SDK provides the default classes necessary to integrate Penthera functions using either
Amazon Device Messaging (ADM) or Firebase Cloud Messaging (FCM). To leverage push notifications
with the Penthera SDK in your app, you will need to:

• complete the generic install of either FCM or ADM into your project,
• configure your manifest to reference the provided Penthera SDK components to support FCM or

ADM, and
• enter your messaging info into the Penthera Cloud admin, so that our cloud can send to your app.

If you need to receive push messages from other sources into your app, for purposes outside of the
Penthera SDK, you may subclass our provided components to handle your other messages elsewhere
in your app. This is the simplest approach for an app that does not already use push. If you are adding
our SDK into an app where you already implement your own push notifications, you may instead wish to
use a method on our SDK API which will inform the SDK of the push message, and our SDK will deter-
mine if it should handle the message or not. That method will return a boolean to indicate if the mes-
sage was intended for the SDK and has been consumed, allowing your app to perform normal process-
ing with other messages.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 8 CONFIDENTIAL - For Licensed Use Only

NOTE
Because the Penthera SDK ships with classes supporting ADM, if you are not including
the third-party Amazon Device Messaging library in your project, your compiler may
warn of missing class dependencies. These may look like the following:

com.penthera.virtuososdk.client.subscriptions.ADMReceiver:
can't find superclass or interface
com.amazon.device.messaging.ADMMessageReceiver
com.penthera.virtuososdk.client.subscriptions.ADMService: can't
find superclass or interface
com.amazon.device.messaging.ADMMessageHandlerBasecom.penthera.vi
rtuososdk.client.subscriptions.ADMReceiver: can't find
referenced class
com.amazon.device.messaging.ADMMessageReceivercom.penthera.virtu
ososdk.client.subscriptions.ADMReceiver: can't find referenced
class
com.amazon.device.messaging.ADMMessageHandlerBasecom.penthera.vi
rtuososdk.client.subscriptions.ADMService: can't find
referenced class
com.amazon.device.messaging.ADMMessageHandlerBasecom.penthera.vi
rtuososdk.subscriptions.PushTokenManager: can't find referenced
class

Code minimization by ProGuard or R8 will remove the unused files, but to suppress re-
lated warnings you can use the following dontwarn directives in your proguard con-
fig:

-dontwarn
com.penthera.virtuososdk.client.subscriptions.ADMService
-dontwarn
com.penthera.virtuososdk.client.subscriptions.ADMReceiver

To configure your app to use a messaging provider, do the following:

Complete the generic install of your messaging provider
To receive push messages either through Amazon Device Messaging (ADM) or Firebase Cloud Mes-
saging (FCM) you need to add the appropriate package dependency, and configure your application to
enable push notification receivers and services. For supporting FCM you need to provide the google-
services.json file obtained from the Firebase console. If using ADM then you will need to provide
an api_key.txt which contains the ADM key supplied in the Amazon developer console.

Instructions for setting up FCM can be found here: Manually add Firebase

Instructions for setting up ADM can be found here: Obtaining ADM Credentials and Store your API key
as an asset. For ADM you will wind up with manifest entries similar to the following:

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 9 CONFIDENTIAL - For Licensed Use Only

https://firebase.google.com/docs/android/setup#manually_add_firebase
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/adm-obtaining-credentials
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/adm-integrating-your-app#store-your-api-key-as-an-asset
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/adm-integrating-your-app#store-your-api-key-as-an-asset

 <!-- This permission allows your app access to receive push
notifications from ADM. -->
 <uses-permission
android:name="com.amazon.device.messaging.permission.RECEIVE" />

 <!-- This permission enables ADM -->
 <amazon:enable-feature
 android:name="com.amazon.device.messaging"
 android:required="false"/>

 <!-- This permission ensures that no other application can intercept
your ADM messages. -->
 <permission
 android:name="com.yourdomain.yourapp.permission.RECEIVE_ADM_MESSAGE"
 android:protectionLevel="signature" />
 <uses-permission
android:name="com.yourdomain.yourapp.permission.RECEIVE_ADM_MESSAGE"

TIP
Not all Android devices have GooglePlay Services on the ROM. You may want to
check within your app and prompt the user to install it. We suggest you do so within the
onServiceAvailabilityResponse response of the IPushRegistrationLis-
tener. See the SDK Demo for details on how to do this, or visit Check for GooglePlay
Services

Configure your manifest for the provided Penthera SDK messaging compo-
nents
For the SDK to function correctly with FCM or ADM you must use the push notification services and
receivers provided in the SDK. You will need to declare these in the manifest as shown below.

For FCM you will add a service, similar to the following:

 <service

android:name="com.penthera.virtuososdk.client.subscriptions.FcmMessagingServ
ice">
 <intent-filter>
 <action android:name="com.google.firebase.MESSAGING_EVENT" />
 </intent-filter>
 </service>

For ADM you will add a service and receiver, similar to the following:

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 10 CONFIDENTIAL - For Licensed Use Only

https://firebase.google.com/docs/cloud-messaging/android/client#sample-play
https://firebase.google.com/docs/cloud-messaging/android/client#sample-play

 <service

android:name="com.penthera.virtuososdk.client.subscriptions.ADMService"
 android:exported="false" />

 <receiver

android:name="com.penthera.virtuososdk.client.subscriptions.ADMReceiver"
 android:permission="com.amazon.device.messaging.permission.SEND" >

 <!-- To interact with ADM, your app must listen for the following
intents. -->
 <intent-filter>
 <action
android:name="com.amazon.device.messaging.intent.REGISTRATION" />
 <action
android:name="com.amazon.device.messaging.intent.RECEIVE" />

 <!-- Replace the name in the category tag with your app
package name. -->
 <category android:name="com.yourdomain.yourapp" />
 </intent-filter>
 </receiver>

If you need to have access to the token or will be handling messages other than those needed by the
SDK then you can subclass the SDK classes. Remember to always call the super implementation of
any methods which are overridden. See DemoFCMService and DemoADMService in the SDK Demo
application for an example of how to subclass the SDK classes. The SDK Demo also shows how to
declare them in the manifest, with your custom components registered instead of the SDK default im-
plementations.

Configure the Penthera Cloud with your messaging credentials
Using the URL and login credentials provided by Penthera Support, log into your Penthera Cloud admin
console to add your messaging credentials to your cloud application config. It is acceptable to provide
the credentials even if they are also being used by another messaging provider in your infrastructure,
though with FCM you do have the option of using separate keys targeting different services in the same
app.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 11 CONFIDENTIAL - For Licensed Use Only

PERFORMANCE WITH PUSH NOTIFICATIONS
For performance reasons, Penthera batches up "push notice jobs" into groups, and the
job processor fires them at intervals. The default interval is every 5 minutes. When the
push notices go out from the server, the platform push service accepts them and then
they may be delivered, or not.

For instance, some push messaging providers reserve the right to delay push notices
until "convenient" times for the device, which could be a device unlock or when the de-
vice starts up its wifi / cellular radio. So there can be a delay between the push being
sent to the push notification provider and the actual push notice getting to the device.
In addition, on some systems pushes are delivered quickly when the user is frequently
using your app, but are delivered "less quickly" (the timing of which is imprecise) when
a user less frequently uses your app.

Push notice delivery is also not guaranteed. Because push messaging is not a guaran-
teed service, the commands that Penthera sends in the push notice are also sent
down to the device during application syncs.

If the device misses a push for some reason, the next time the SDK syncs with the
backplane server, it will pickup whatever commands it missed and process them at that
time.

The Penthera Android SDK guarantees at least one sync every 24 hours, as long as
the device comes online during that time. If no sync has occurred within the past 24
hours, the SDK will attempt to sync when the network state changes (the device comes
online), or when the app is brought to the foreground.

Generally, push notices are posted to the device fairly quickly by Firebase after the no-
tice is sent from the Penthera Cloud.

IPushRegistrationObserver: Android
Implement the IPushRegistrationObserver interface provided in the Penthera SDK to monitor for
success/failure when registering a device with push messaging services. This interface provides the
callback method onServiceAvailabilityResponse(int pushService, int errorCode),
where the pushService will be one of those listed in Common.PushService in the Penthera SDK. If
using GCM/FCM, the errorCode will be one of those from GooglePlayServices com.google.an-
droid.gms.common.ConnectionResult, or if using ADM the errorCode will be from Com-
mon.AdmPushServiceAvailability in the Penthera SDK.

Fixing Firebase Cloud Messaging errors: Android
If any of the following errors are showing in your logs, there is a configuration issue with your Firebase
Cloud Messaging (FCM):

• Received error: Received push with missing authorization on platform
• Received error: Received push with invalid authorization on platform
• Application does not have permission to send to this device.
• Original Message: Error: mismatched sender ID

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 12 CONFIDENTIAL - For Licensed Use Only

NOTICE
GCM has been deprecated by Google and is being phased out. To support "legacy
systems", the FCM setup supports a "Legacy Token" format. Which essentially be-
haves exactly the same way as GCM did, but the below screens may look a little differ-
ent now than they did before the change.

Check the FCM Server API Key
If it appears that your push notifications are no longer being received on Android devices, it is possible
that you are using the Android API Key rather than the Server API Key to identify your project in our
Penthera Cloud.

To fix this issue, create a new key:

1. Log into the Firebase site.
2. Select your project.
3. From the Settings button , choose Project Settings.
4. Choose Cloud Messaging to view your Server Keys. Either of these keys can be used in our sys-

tem.
5. Ensure that this is the Key used in configuring the Cloud Messaging services in the Penthera Cloud

dashboard. The Server Key should go in the GCM field.

Check the Sender ID

1. Log into the Firebase site.
2. Click the Settings button and choose Project Settings.
3. Choose Cloud Messaging to view your Sender ID. your project.

Double check the Package Name, if set for your project.

1. Select the Settings button and choose Settings from the menu.
2. If you have a Package Name configured, it will be displayed.

Other common things to check

• If you see the error Received error: Received push with missing authorization on platform, check that
Cloud Messaging is enabled in the console.

• Background data needs to be enabled on devices. Otherwise pushes cannot send to Android devices
until they have active WiFi connection. To enable background data for each version of Android OS,
please consult Android documentation.

• Notifications are not enabled for the application itself. Notifications are enabled or disabled in the
Manage Applications screen. Navigate there for each Android OS by selecting Show Notifications.

• If you are testing a production build, the inProduction flag in your code should be set to true . Other-
wise, it should be set to false .

• The Mismatched Sender ID error happens when your Sender ID is incorrect. Ensure you're using
your project number, not ID.

Availability Windows for Assets: Android
If you are using DRM, your DRM configuration will typically control the availability of the asset for play-
back. The Penthera SDK provides "Availability Windows" for assets in cases where customers are not
using DRM, or in some cases where additional control features may be desired in addition to the DRM.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 13 CONFIDENTIAL - For Licensed Use Only

https://console.firebase.google.com/
https://console.firebase.google.com/

The Availability Window governs when the video is actually available to the end user, even if its files
have already been downloaded onto the device by the SDK.

The Penthera SDK Availability Window enforces several windowing parameters, which may be set on a
per-asset basis. You may use one or more of the parameters at a time, or none at all:

Window parameter Description

Start Window (a.k.a.
“Publish Date”)

The SDK downloads the video as soon as possible, but will not make the video available through
any of its APIs until after this date.

End Window (a.k.a. "Ex-
piry Date”)

The SDK automatically deletes the video as soon as possible after this date.

Expiry After Download
(EAD)

The duration a video is accessible after download has completed. As soon as possible after this time
period has elapsed, the SDK automatically deletes this video.

Expiry After Play (EAP) The duration a video is accessible after first play. As soon as possible after this time period has
elapsed, the SDK deletes this video. To enforce this rule, the SDK has to know when the video is
played, so be sure to register a play-start event with the SDK when the video is played.

The Penthera Cloud stores a global default value for EAP and EAD. You may set these values from the
Penthera Cloud admin web console. If set, the Penthera Cloud transmits these default values to all SDK
instances. Settings received from the Penthera Cloud may be overridden by code on the device.

Typically, a Content Management System (CMS) stores windowing information and communicates it to
the enclosing app. The app then feeds this windowing information to the SDK. The data flows as fol-
lows:

To set any of the availability window parameters for a video:

asset.setEndWindow(new_long_value);
asset.setStartWindow(new_long_value);
asset.setEad(new_long_value);
asset.setEap(new_long_value);
mAssetManager.update(asset);

To get the availability window for an asset:

IAsset asset = (IAsset) mAssetManager.getAsset(uuidString);
long expiry_after_download = asset.getEad();
long expiry_after_play = asset.getEap();
long start_window = asset.getStartWindow();
long end_window = asset.getEndWindow();

TIP
When an asset expires, the SDK deletes the data associated with the asset (e.g. the
mp4 file or the .ts files), to free disk space. However, the SDK retains the asset’s meta-
data. This allows your app to access information about the expired asset, such as to
indicate expired assets in your user interface. The SDK provides access to these ex-
pired assets through the IAssetManager.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 14 CONFIDENTIAL - For Licensed Use Only

NOTE
The SDK automatically removes expired assets from the download queue.

NOTE
The expiry date can be changed remotely after an asset has been downloaded to disk,
but the expiryAfterDownload and expiryAfterPlay values cannot.

NOTE
The Penthera SDK has an internal secure clock implementation that is entirely inde-
pendent of the local clock time. The secure clock time is based on a combination of
NTP calls and Penthera Cloud time stamping for "ground truth time," combined with
tracked differentials of the system "up-time clock". All expiry calculations are done
against this internal secure clock, so that expiry is independent of the local clock set-
tings. The secure clock maintained by the Penthera SDK provides a public API call to
determine the secure clock date/time.

LOW BATTERY IMPACTS VARIOUS FEATURES
The SDK battery threshold value in ISettings impacts the SDK download behavior,
but device battery level impacts other SDK behaviors which are not controllable by the
SDK's ISettings value. Various functions of the SDK are implemented as Android
OS Workmanager tasks which are configured not to run whenever "battery is low". The
battery level which Android OS Workmanager considers "low" is commonly set to 20%
and is not under control by the SDK. Thus, independent of the SDK ISettings value
you may see the following SDK functions delayed whenever the OS determines the de-
vice is in a low-battery state:

• Execution of Expiry actions
For assets with SDK expiry values the SDK will still prevent playback of expired as-
sets, but the automatic removal of the expired asset files from disk may be delayed if
device battery is low.

• Automatic refresh of Ads
• Timed refreshes of DRM (refreshes requested manually by your code will still occur)

Mark an Asset as Expired: Android
In addition to the availability window information, expiry after download, and expiry after playback, your
code also has the ability to expire an asset at any time. To manually mark an asset as having expired:

IIdentifier myAsset = mAssetManager.get(uuidString);
mAssetManager.expire(myAsset.getId());

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 15 CONFIDENTIAL - For Licensed Use Only

NOTE
There is no requirement to manually expire an asset. The SDK will automatically track
and mark expiry if appropriate metadata has been supplied in the Penthera Cloud set-
tings or on the asset instance at creation or after.

Error handling for MIME types
The SDK checks the reported MIME content type of each file that is downloaded and will warn the de-
veloper or block the download if it determines that the content being downloaded does not appear to be
appropriate for the expected content. The main purpose of this check is to intelligently catch cases
where a proxy might intercept a request and return HTML content, for instance in the case of a sign-in
page for a roaming network. Without detecting such occurrences there is a risk that the SDK would
download and store an HTML page in place of a video segment, reporting the download as successful
and subsequently delivering the page to a player.

The SDK checks the content type based upon the files purpose in a segmented asset, and automatical-
ly accepts default MIME types for video, audio, and text segments. If you are delivering content with
content types that the SDK does not automatically accept then it may be necessary to configure those
types within the MIME type settings. The download behavior changes between debug and production
versions of the SDK to help developers identify where MIME types are not recognized. The debug ver-
sion will stop the download and mark an asset as blocked upon encountering any unexpected content
types in order to highlight issues during the development process, whereas the release version is more
lenient of issues and will only block the download for the most questionable MIME types.

MIME type error behavior
During development, the debug SDK version applies strict adherence to the content type rules in order
to help the developers ensure that any exceptions to the default types have been properly configured.
Any content type that does not meet the configured or built-in rules will cause the download to fail. The
asset download status will be set to indicate the download finished with an error caused by MIME type
mismatch and an analytics event will be generated for the download error.

In production these rules are loosened to prevent new content types from causing assets downloads to
fail unnecessarily, while serious potential failures such as receiving HTML or XML text types will still
cause an error. The SDK will not raise an error for any content-type failure other than those indicating a
text response. Instead it will log the issue to Logcat at ERROR level and generate an analytics event for
download warning. If text MIME types are received for video or audio segments then the asset down-
load status will be set to indicate a MIME type mismatch and analytics event generated for download
error.

Download warnings can be monitored in the analytics output once the application is deployed to catch
any issues which may occur in the future where mime types delivered by content management systems
might change.

IMPORTANT
Receiving text MIME types such as text/html and text/xml for an audio or video seg-
ment will always cause the SDK to raise an error and stop the download.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 16 CONFIDENTIAL - For Licensed Use Only

Configuring MIME type settings
Additional MIME types can be managed in the SDK settings. They are specified by asset type (HLS or
DASH) and segment types including video, audio, and text. The MimeTypeSettings object can be
fetched from the ISettings interface. Please note that it must be applied back to the settings using
the setMimeTypes() method for changes to take effect. The MimeTypeSettings class provides
methods to get and set a collection of accepted MIME types for each asset type and segment type.

Example of adding "video/mp4" as an accepted MIME type for text segment types in DASH assets:

List<String> ccMimes = Collections.singletonList("video/mp4");
MimeTypeSettings mimes =
mVirtuoso.getSettings().getMimeTypeSettings();
mimes.setMimeTypesForFileAndSegment(MimeTypeSettings.ManifestType.DASH,
MimeTypeSettings.SegmentType.TEXT, ccMimes);
mVirtuoso.getSettings().setMimeTypeSettings(mimes);

NOTE
The default MIME types accepted by the SDK are pre-configured internally and do not
need to be managed via the MIME type settings API. They include:

For all uses: application/binary, binary/octet-stream, application/octet-stream

Video/Audio: audio/*, video/*

Text (closed captions and subtitles): text/*, application/ttml*, application/mp4*

Ancillary files / Licenses / DASH init segments: all types accepted

NOTE
Prior to Penthera Android SDK 4.x, changes to ISettings values required call-
ing .save() to commit them permanently. This is no longer necessary as of SDK 4.0.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 17 CONFIDENTIAL - For Licensed Use Only

Advanced Topics

Upgrading the SDK: Android

Database Versioning: Android
The SDK uses an internal database to manage all the asset data. The database is versioned and often
changes between releases to support new features. The SDK does not support downgrading the data-
base as this would result in removing support for features that may have been used while downloading
the assets. Managing the potential issues in feature downgrade in a production application would be
difficult as it would depend on the treatment by the client application, therefore the safest approach is to
not provide any path for downgrade. In turn, this means the SDK itself cannot be downgraded within a
production application.

In order to catch the situation during app development where an application with an old SDK is de-
ployed onto a device which already had a more recent version of the database, we allow the Content
Provider to throw the standard exception for a failed downgrade when it detects an older database ver-
sion being installed over a newer one. This prevents the application from running, highlights the issue to
developers, and prevents them from spending time investigating unexpected behaviour. If the SDK ver-
sion is downgraded during development then the application will need to be uninstalled from the device
and reinstalled to ensure consistent operation.

Upgrading to Penthera 4.0 Android SDK
If you are upgrading to the 4.0 Penthera Android SDK from an earlier Penthera SDK, it is important to
note that significant changes have been made with the goal of simplification and modernization. You will
want to read this entire section to understand implications in your project from the following major SDK
changes:

• Simplified integration and extended compatibility for various players has been achieved with compati-
bility classes. These are delivered as supporting dependencies, including various ExoPlayer versions
as well as BitMovin player. Read further to learn how to leverage the integration libraries.

• Simplified AndroidManifest.xml by removing the need for boilerplate configurations of our download
service and broadcast receiver. Read further to learn what can and should be removed from your
manifest, or how to maintain legacy configuration support if desired.

• Simplified AndroidManifest.xml by removing the need for boilerplate configuration of our content pro-
vider. Read further to learn what can and should be removed from your manifest, or how to maintain
legacy configuration support if desired.

• Eliminated the need for the Service Starter function to exist in a separate process. The legacy ap-
proach still works, but read further to learn how to simplify your processes configuration.

• Added support for AndroidX Component Architecture, including use of a ViewModel architecture and
the exposure of SDK data as LiveData objects which are Lifecycle aware. Read further to learn how
to include and use this approach in your app.

Player Compatibility Components
Add the new Penthera gradle dependency for the player integration component which is appropriate to
your version of ExoPlayer, or for the Bitmovin player. You may optionally continue using the existing sol-
ution approach which supports ExoPlayer up to version 11, but to do so you will still need to reference
the new support library we provide for ExoPlayer 11 because the previous ExoPlayer support classes
have been removed from the core SDK and placed into that library. See Playout with Widevine Persis-
ted License: Android [30] for further details which are useful whether your app uses DRM or not.

For ExoPlayer 12 and later use the new dependency, which significantly simplifies integrating support
for DRM managed by the Penthera SDK. This integration uses the MediaItem configuration pattern as

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 18 CONFIDENTIAL - For Licensed Use Only

well as the ExoPlayer playlist for scheduling multiple assets to play. This also helps with advertising
support. The new player integration approach can be seen in the example projects included with the
SDK distribution.

Simplified Service Declarations
The SDK no longer requires several of its legacy AndroidManifest.xml configuration blocks. In most ca-
ses you should remove the following from your manifest:

• Remove the service tag block which defines com.penthera.virtuososdk.service.Virtuo-
soService

• Remove the receiver tag block which defines the internal-use broadcast receiver com.pen-
thera.virtuososdk.service.VirtuosoService$ServiceMessageReceiver

• Remove the service tag block which defines com.penthera.virtuososdk.service.Virtuo-
soClientHTTPService

• Remove the uses-permission tags which define the following permissions, unless your app uses
them otherwise:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-
permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>
<uses-permission android:name="android.permission.WAKE_LOCK"/>
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
<uses-permission android:name="android.permission.CHANGE_WIFI_STATE"/>

If for any reason you need to retain your existing manifest definitions or control the process names,
please contact Penthera Support for assistance to ensure your configuration properly overrides ours.

Content Provider Boilerplate
The 4.0 SDK provides a simplified content provider implementation. For apps migrating from pre-4.0
you may keep your content provider configuration as-is, or migrate to the new approach to simplify your
project. If you wish to migrate to the new approach, you may:

• Remove your subclass of VirtuosoSDKContentProvider from the project
• Remove the provider block from AndroidManifest.xml which defines your content provider
• Use the new 4.0 approach to the content provider, which generates the content provider and configu-

ration for you via gradle. This is covered in detail by Set up the Android SDK in our basic android dev
guide for the 4.0 SDK. The high level approach is:
• Ensure our gradle repository is referenced in your gradle settings
• Add a reference to our SDK configuration plugin to your gradle plugins block
When configured with this new approach, the content provider class is generated for you, and the ap-
propriate AndroidManifest.xml configuration is provided automatically as well.

Service Starter Process Simplification
The class in your project which derives from the Penthera SDK Service Starter (from VirtuosoSer-
viceStarter) can now run in the main process rather than its own process. To make this change,
modify the android:process tag of your receiver block in AndroidManifest.xml where you define
your Service Starter.

AndroidX Component Architecture
The Penthera 4.0 SDK provides LiveData objects which are Lifecycle aware and can be integrated into
your ViewModel classes. To use this approach you will add the new Penthera gradle dependency which
contains the AndroidX extensions. In your code you will then create a LiveData factory object associ-
ated with the lifecycle owner, and Fetch LiveData objects from that factory to observe in your applica-
tion. This is covered in detail by Set up the Android SDK in our basic android dev guide for the 4.0 SDK.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 19 CONFIDENTIAL - For Licensed Use Only

Observing and Interacting with Asset Creation & Queuing
The SDK provides a few observer interfaces which can be implemented to observe and interact with
various steps in creating and queuing manifest assets. These include the following:

•ISegmentedAssetFromParserObserver
If this observer is provided in the request to create an asset, it receives a notification when the ISeg-
mentedAsset has been created from a parsed manifest. The observer call provides a reference to the
asset after parsing was attempted, an indication of any parsing error, and a flag indicating if the asset
was already added to the download queue.
This is the easiest place to confirm that asset parsing occurred successfully, and provides an oppor-
tunity to handle any error. You might use this as an opportunity to modify the asset details, but it is
important to note that for some asset configurations (e.g., FastPlay enabled assets) and for assets
already added to the queue, downloading may have already begun. To ensure asset modifications
occur before any download is attempted, consider using IManifestParserObserver instead.
For further details see Observing Manifest Parsing Results with ISegmentedAssetFromParserOb-
server: Android [20].

DOWNLOAD MAY BEGIN BEFORE PARSING COMPLETES
As of the Penthera Android SDK 3.15.14 and iOS SDK 4.0, the engine can begin to
download segmented asset files before the manifest parsing is complete. This allows
downloads to begin sooner, but may result in parsing and downloading notifications
arriving in a different order than expected in the past.

•IQueuedAssetPermissionObserver
If this observer is provided in the request to create an asset or in the request to add an asset to the
queue, it receives a notification when the asset has been added to the queue. This provides a refer-
ence to the asset after queueing was attempted, an indication whether the asset was successfully
added to the queue, an indication whether download is permitted (at this time), and any relevant per-
mission code. Note that when you provide this observer, the initial permission check attempt will oc-
cur when the asset is added to queue, regardless of the IBackplaneSettings requirePermis-
sionWhenQueued value. See Observing Queue Additions with IQueuedAssetPermissionObserver:
Android [21] for further details.

•IManifestParserObserver
Unlike other parsing and queue observers, this observer is configured in your app manifest, and runs
in the SDK's download engine Service instead of in your main app process. This observer is notified
after each segment is parsed, and again just before the asset is added to the download queue. This
allows the observer to make modifications to either the asset or its segments as each segment is
parsed from the manifest, or to modify the asset just before it is added to queue. This is the preferred
location to modify the asset or segments, such as if you have a requirement to manually add custom
tokens to segment URLs before download. See Observing or Modifying Manifest Parsing with IMani-
festParserObserver: Android [21] for further details.

Observing Manifest Parsing Results with ISegmentedAssetFromParserOb-
server: Android
The ISegmentedAssetFromParserObserver is passed into various constructors for segmented As-
set instances in the SDK, and receives a callback when the parsing of that particular asset manifest is
completed.

The observer interface has a single method complete which will be passed a reference to the ISeg-
mentedAsset, an error code if necessary (or a 0, if no error), and a boolean indicating whether the asset
was added to the download queue.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 20 CONFIDENTIAL - For Licensed Use Only

If the asset indicates it was added to the download queue, and no other assets were awaiting down-
load, then the asset download may have started before this callback occurs. Download may have also
begun if the asset was marked to enable FastPlay, even if it was not added to queue.

Depending on your UI design, an ISegmentedAssetFromParserObserver may be intended for use
in the current Activity, or for a more global app purpose. If it is for an app-wide purpose, you may want
to hold your observer outside the Activity where the asset was constructed. If instead the ISegmente-
dAssetFromParserObserver created during asset construction was designed only for updating the
current Activity, then you may have dispensed with it if the user has navigated away from that Activity.
In either case you have the option of later creating a new observer if needed. If the user navigates into
an activity where you want to instantiate a new ISegmentedAssetFromParserObserver for a previ-
ously-created asset, you may create a new observer instance and pass it to the addParserObser-
verForAsset method of the IAssetManager. Note that the IAssetManager method will only regis-
ter the observer if the asset parsing is not already complete and the asset has not reached the down-
load pending state.

DOWNLOAD MAY BEGIN BEFORE PARSING COMPLETES
As of the Penthera Android SDK 3.15.14 and iOS SDK 4.0, the engine can begin to
download segmented asset files before the manifest parsing is complete. This allows
downloads to begin sooner, but may result in parsing and downloading notifications ar-
riving in a different order than expected in the past.

Observing Queue Additions with IQueuedAssetPermissionObserver: Android
The IQueue.IQueuedAssetPermissionObserver enables the application to be notified when an
asset has been added to the queue, and includes a permission response from the Penthera Cloud if
that permission check occurs while being added to the queue.

The observer interface has a single method onQueuedWithAssetPermission which will be called to
indicate if the asset has been queued, indicate whether download is permitted, provide a reference to
the asset, and provide the permissions result code. This callback may occur before the manifest parse
is completed, because some asset configurations cause the asset to be queued during the parsing
process. If the asset is FastPlay enabled, or if no other assets in queue were awaiting download, then
the asset download may be starting or in progress at the same time that this callback occurs.

The IQueue.IQueuedAssetPermissionObserver interface can be instantiated and passed either
at the time of creation of the asset or via addPermissionsObserverForAsset() on IAssetMan-
ager. See the various AssetBuilders in the SDK for methods to add the observer when creating the
asset.

Since the IAssetManager approach of adding this observer may occur well after creation of the asset,
that approach will only register the observer if the asset parsing is not yet complete and the permissions
request has not yet been processed. Due to that potential, it is recommended to provide this observer to
the asset creation methods.

If you add this observer then the asset will have its permissions checked at the time of queuing instead
of when download starts. This is equivalent to setting requirePermissionsOnQueue in the IBack-
planeSettings, so do not use this observer if you want to defer permission checks to when the
download begins. In either case, the SDK checks permissions again when download completes.

Observing or Modifying Manifest Parsing with IManifestParserObserver: An-
droid
Manifest parsing occurs in the SDK's download Service, which is isolated in a different process from the
main client application. The IManifestParserObserver is ideal if your application is required to al-

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 21 CONFIDENTIAL - For Licensed Use Only

ter individual segment URLs prior to asset download, or to alter the asset properties prior to the asset
being added to the download queue. Otherwise, the IManifestParserObserver is likely unneces-
sary, and the other observers you could provide during asset creation will provide enough functionality.

Implementing IManifestParserObserver
To provide an IManifestParserObserver to the SDK's download Service requires you implement
the observer, and also implement and register a factory component in your manifest which the SDK
which will use to instantiate the observer from within the download service.

1. Create your implementation of the IManifestParserObserver interface, using its didParse-
Segment() method to alter the segment URLs or willAddToQueue() method to alter parame-
ters of the asset such as start window, end window, or download limits. Remember this class will
execute in the SDK's Service thread, not in your main app thread, so be aware of any implications
this might have for your implementation.

package com.yourcompany;

public class MyManifestParserObserver implements IManifestParserObserver
{
 @Override
 public String didParseSegment(ISegmentedAsset asset, ISegment
segment)
 {
 // If your assets require you add to or change the download URL
 // from the manifest prior to downloading it, then
 // you would use this method to return the modified URL.
 return segment.getRemotePath()+"&magicToken=123456";
 }

 @Override
 public void willAddToQueue(ISegmentedAsset aSegmentedAsset,
IAssetManager assetManager, Context context)
 {
 //You could modify the asset here and save it via the
IAssetManager.
 //See the SDK Demo for an example.
 }

}

DOWNLOAD MAY BEGIN BEFORE PARSING COMPLETES
As of the Penthera Android SDK 3.15.14 and iOS SDK 4.0, the engine can begin
to download segmented asset files before the manifest parsing is complete. This
allows downloads to begin sooner, but may result in parsing and downloading noti-
fications arriving in a different order than expected in the past.

2. Next, implement the IBackgroundProcessingManager interface, which contains a factory meth-
od that will be called from within the SDK to instantiate your manifest parser observer at appropriate
times. Implement the getManifestParserObserver() method such that it returns an instance
of your observer. This method will be called separately for each asset that is parsed.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 22 CONFIDENTIAL - For Licensed Use Only

package com.yourcompany;

class MyExampleBackgroundProcessingManager implements
IBackgroundProcessingManager {
 @Override
 public IManifestParserObserver getManifestParserObserver() {
 return new MyManifestParserObserver();
 }

 @Override
 public IClientSideAdsParserProvider getClientSideAdsParserProvider()
{
 return null;
 }

 @Override
 public ISubscriptionsProvider getSubscriptionsProvider() {
 return null;
 }

 @Override
 public IPlaylistAssetProvider getPlaylistProvider() {
 return null;
 }
}

NOTE
Notice that the IBackgroundProcessingManager is also used in other optional
background processing, such as subscriptions and ads. If you are not using these
other features, simply return null from unused methods.

3. Register your IBackgroundProcessingManager implementation with the SDK. The SDK will
create an instance of this class, if registered, in order to fetch the manifest parser observer. The
implementation must be declared in the Android manifest using a meta data entry with the name
com.penthera.virtuososdk.background.manager.impl and value matching your imple-
mentation's class name.

 <meta-data
 android:name="com.penthera.virtuososdk.background.manager.impl"
 android:value="com.yourcompany.MyExampleBackgroundProcessingManager"
 />

IMPORTANT
Because it is referenced in the manifest, your IBackgroundProcessingManag-
er implementation will need to have its class name protected from ProGuard/R8
obfuscation. Our SDK is distributed with a ProGuard rule in place to protect the
name of any class implementing the interface, which should be honored provided
you included our SDK into your project automatically via gradle.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 23 CONFIDENTIAL - For Licensed Use Only

IMPORTANT
It is important to consider that implementations of IBackgroundProcessingManag-
er and IManifestParserObserver are running in a separate android process to
the application UI and cannot directly share any memory based resources with the
main application code. For instance, if you create a singleton in the service process, it
will not be the same singleton instance which is in the main application process. Com-
munication between the two will require using Android Inter Process Communication
methods, or the component will need to make its own network requests to fetch the
necessary information to achieve its purpose. The download service process can be
running within a foreground service when the application is not running, so this may al-
so be something to consider during implementation.

Resolution-based Manifest Filtering
Apps may wish to limit the size of downloaded assets to something less than the maximum quality
available in their asset manifests. It is common (and recommended) practice to achieve this by telling
the SDK to target a maximum video bitrate, as discussed elsewhere in our SDK documentation.

Bitrate targets have various advantages over resolution targets, including resilience to catalog changes
over time. As encoding technology improves, higher resolutions become available at lower bitrates, and
catalogs sometimes acquire assets in entirely new rendition formats which do not fit into the anticipated
resolution sets.

Frequently a target bitrate will be used to control the downloaded asset rendition even when the variety
of available renditions are generally associated with various video resolutions. This is achieved by iden-
tifying a simple clustering of catalog bitrates around comparable resolutions, and selecting target bitrate
options which reflect a comfortable ceiling for each cluster.

Occasionally an asset catalog will still consist of renditions which the app wishes to filter by their stated
video resolutions rather than by bitrates.

Beginning with the Penthera Android SDK 4.0.2 you may target a set of allowed resolutions by calling
the withResolutionFilter(...) method while configuring asset parameters using either the
MPDAssetBuilder or HLSAssetBuilder.

The resolution set must be expressed as one or more strings in the form <width>x<height> which is
in keeping with the MPD and HLS specs. If multiple renditions match in a given asset, bitrate rules will
be applied to make the final determination. Remember that any codec or language filters which you
have applied may also be limiting what renditions are available.

Custom Manifest Filtering
In the event your manifest rendition selection cannot be achieved with either the bitrate or resolution
filtering built into the Penthera SDK, the SDK also offers a delegate you may implement to take com-
plete control over rendition selection.

Beginning with the Penthera Android SDK 4.0.2 you may implement either the IDASHManifestRen-
ditionSelector or IHLSManifestRenditionSelector interface, and return an instance of either
from the getDASHManifestRenditionSelector or getHLSManifestRenditionSelector
methods of an IBackgroundProcessingManager implementation registered in your project.

In either selector your selectRendition method implementation will receive a list of renditions avail-
able in the manifest, and your method should return the item from the list which represents the rendition
the SDK should use. The available details of each rendition include properties of the related manifest
type, such as bandwidth, resolution, codecs, frame rate, and more.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 24 CONFIDENTIAL - For Licensed Use Only

If you have not already implemented anIBackgroundProcessingManager in your app, read our en-
tire documentation section on Observing or Modifying Manifest Parsing with IManifestParserObserver:
Android [21] for the related steps and some important related information. The process is identical ex-
cept in this case you will be implementing the rendition selector and returning it from an appropriate
method of your background processing manager, instead of implementing and returning a manifest
parsing observer. Note also that some of the available example projects contain background processing
manager examples.

Android occasionally changes the proxy port
On very rare occasion the port will have changed upon restart of the HTTP proxy. There is a very re-
mote edge case tied to this occurrence, due to Android lifecycle timing. If the port changes and the play-
er resumes AFTER the proxy service has restarted, your code might miss the notification and still at-
tempt to restart playback on the old port. It is very difficult to trigger this error in testing, as the server
nearly always restarts on the same port it was using prior, but it is theoretically possible.

If you get a playback error, storing the current playback position and restarting the player at that position
with a newly requested manifest will correct for that problem. In nearly all cases however, the service
will resume on the same port it was using prior, and playback will continue normally.

Using Cursors to Access Assets
You can also retrieve the file path or asset playlist through the Cursors provided by the Asset Manager.

TIP
If you get the playback URL from the cursor then it does not contain the full URL in the
same way that the corresponding method on IAsset would do. The URL retrieve from
the cursor only contains the relative path. You need to append it to the proxy url, which
can be fetched from the base Virtuoso object with getHTTPProxyBaseUri()

TIP
The asset manager class itself provides a cursor over all assets, including those which
are expired.

Here is an example of cursor use:

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 25 CONFIDENTIAL - For Licensed Use Only

// Representation of a playable asset
private class MyAsset {
 private final int mId;
 private final Uri mUri;
 private final String mAssetId;
 private final String mMime;

 MyAsset(int id, Uri uri, String assetId, String mime)
 {
 mId = id;
 mUri = uri;
 mAssetId = assetId;
 mMime = mime;
 }

 void play(Context context) {
 // Register a ‘play start’ event
 Common.Events.addPlayStartEvent(context,mAssetId);
 Intent openIntent = new Intent(android.content.Intent.ACTION_VIEW);
 openIntent.setDataAndType(Uri.parse(pl.toString()), mimeType);
 context.startActivity(openIntent);
 }
}

List<MyAsset> myAssets = new ArrayList<MyAsset>();
Cursor c = null;
try {
 c = mAssetManager.getDownloaded()
 .getCursor(new String[] { AssetColumns._ID
 ,AssetColumns.TYPE
 ,AssetColumns.PLAYLIST
 ,AssetColumns.ASSET_ID
 ,AssetColumns.FILE_PATH
 ,AssetColumns.MIME_TYPE
 },
 null,
 null);

 if(c != null) {
 while (c.moveToNext()) {
 int type = c.getInt(1);
 Uri uri = null;
 String mimeType = null;
 if(type == Common.AssetIdentifierType.FILE_IDENTIFIER) {
 File file = new File(c.getString(4));
 uri = Uri.fromFile(file);
 mimeType = c.getString(5);
 if(TextUtils.isEmpty(mimeType))
 {
 String ext =

android.webkit.MimeTypeMap.getFileExtensionFromUrl(uri.toString());
 mimeType =
android.webkit.MimeTypeMap.getSingleton().getMimeTypeFromExtension(ext)

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 26 CONFIDENTIAL - For Licensed Use Only

 }
 }
 else if (type ==
Common.AssetIdentifierType.SEGMENTED_ASSET_IDENTIFIER) {
 mimeType = "video/*";
 URL pl = new URL(playlist);
 uri = Uri.parse(pl.toString());
 }

 if(uri != null)
 {
 myAssets.add(new
MyAsset(c.getInt(0),uri,c.getString(3),mimeType));
 }
 }
 }
}
finally {
 if(c != null && ! c.isClosed()) { c.close(); }
}

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 27 CONFIDENTIAL - For Licensed Use Only

DRM Setup: Android

The Penthera SDK provides out-of-box support for basic Widevine DRM, together with a mechanism to
easily provide custom support for specialized DRM server requirements as necessary. With a few easy
steps, the SDK will not only manage retrieval of DRM for you, it will also manage the lifecycle of keys
for various assets, including refreshing the keys at appropriate intervals to ensure the best likelihood
that keys are valid for offline playback when your user desires it. At playback, the SDK provides a DRM
session manager which you will integrate with your player of choice, so that SDK-managed keys are
provided to the player whenever necessary.

The LicenseManager class provided with the SDK implements most of the SDK ILicenseManager
interface for you, and in basic cases you need only to override the getLicenseAcquisitionUrl
method to provide the URL for your DRM server endpoint. A DRM server may also have special format-
ting or token requirements in the request and/or response, so various methods of the LicenseManag-
er implementation can be overridden to provide increasing levels of customization. For the most ex-
treme cases you could even create an entirely custom ILicenseManager implementation.

If specialized request headers are needed for your DRM server, override the implementation of the
getKeyRequestProperties method to return a map of header key-value pairs. If even more special-
ized key request properties are required, you can specialize the URL returned from getLicenseAc-
quisitionURL on a per-asset basis, or at the most intense levels of customization you could override
executeKeyRequest and executeProvisionRequest methods to access the underlying Android
KeyRequest and ProvisionRequest instances. Implementations of any of these LicenseManager
methods can have access to the Asset within the LicenseManager to build appropriate request headers,
query parameters or request bodies.

Many Widevine license server implementations wrap the plain keys within JSON or XML response mes-
sages which also provide additional information about the license details or expiry. Overriding Licen-
seManager methods executeKeyRequest and executeProvisionRequest will allow you to high-
ly customize the request and/or retrieve license keys and metadata from specialized responses.

It is recommended to allow the SDK to manage licenses for your application, and request renewed li-
censes for offline playback when the device is online and prior to license expiry. The method setAuto-
maticDrmLicenseRenewalEnabled on ISettings makes it possible to disable this automated up-
date behavior if you need to manually request license updates within your application. If you do not
need the SDK to process DRM at all then it is possible to not provide a license manager implementation
to the SDK. Failure to configure a license manager will cause some warnings to the log file, but the SDK
will then proceed without DRM.

Retrieve and Persist Widevine Licenses: Android
When downloading a Widevine-protected MPEG-DASH or HLS asset, the SDK will attempt to download
and persist the license. In order to retrieve the license, it needs to request it from the licensing server.
The licensing server url may need to be formatted differently depending on the asset.

To provide the correct URL for license retrieval you need to provide an implementation of the ILicen-
seManager interface to the SDK. The easiest way to do this is to extend the LicenseManager class
in the com.penthera.virtuososdk.client.drm package and override the getLicenseAcquis-
tionUrl method.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 28 CONFIDENTIAL - For Licensed Use Only

Implement your LicenseManager subclass

public class YourLicenseManager extends LicenseManager {
 @Override
 public String getLicenseAcquistionUrl() {
 String license_server_url = "https://proxy.uat.widevine.com/proxy";

 /*
 Here you can examine the mAsset or mAssetId member
 variables of the base LicenseManager implementation,
 and modify the license server url as needed:
 */
 String video_id = mAsset != null ? mAsset.getAssetId() : mAssetId !=
null ? mAssetId : null;
 if(!TextUtils.isEmpty(video_id))
 {
 license_server_url += "?video_id="+
 video_id +
 "&provider=widevine_test";
 }

 return license_server_url;
 }
}

Register your LicenseManager subclass for use by the SDK
For the SDK to use your License Manager implementation you need to override a metadata value in the
AndroidManifest.

To override metadata you will first need to add the tools namespace to your android manifest:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 … >

Now add in the metadata to point the SDK to your license manager implementation (replace the value
the fully qualified class name of your implementation):

<meta-data tools:replace="android:value"
 android:name="com.penthera.virtuososdk.license.manager.impl"
 android:value="com.yourdomain.yourapp.YourLicenseManager"/>

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 29 CONFIDENTIAL - For Licensed Use Only

LOW BATTERY IMPACTS VARIOUS FEATURES
The SDK battery threshold value in ISettings impacts the SDK download behavior,
but device battery level impacts other SDK behaviors which are not controllable by the
SDK's ISettings value. Various functions of the SDK are implemented as Android
OS Workmanager tasks which are configured not to run whenever "battery is low". The
battery level which Android OS Workmanager considers "low" is commonly set to 20%
and is not under control by the SDK. Thus, independent of the SDK ISettings value
you may see the following SDK functions delayed whenever the OS determines the de-
vice is in a low-battery state:

• Execution of Expiry actions
For assets with SDK expiry values the SDK will still prevent playback of expired as-
sets, but the automatic removal of the expired asset files from disk may be delayed if
device battery is low.

• Automatic refresh of Ads
• Timed refreshes of DRM (refreshes requested manually by your code will still occur)

Playout with Widevine Persisted License: Android
The ExoPlayer DRM implementation can vary substantially between ExoPlayer versions. The SDK pro-
vides support for multiple versions of ExoPlayer through additional libraries, allowing you to include the
appropriate library in your app.

These new version-specific support packages include an ExoplayerUtils class which can use version
specific code to initialize ExoPlayer for playback of Virtuoso SDK assets. They also contain version-
specific DRM implementations (which can replace code in existing projects that was previously based
on SDK demo code). The support packages include the class ExoplayerUtils which has methods that
streamline creating DRM, MediaSource, MediaItem (ExoPlayer2.12), and fully-initialized ExoPlayer in-
stances.

TIP
If you are migrating to the Penthera 4.0 Android SDK and had previously implemented
a DrmSessionManager based on SDK Demo code from a pre-4.0 Penthera Android
SDK, you may in most cases replace your implementation with the supported imple-
mentation of DrmSessionManager from the appropriate ExoPlayer support library.

The ability of the 4.x SDK to easily support multiple versions of ExoPlayer required
changes to the Virtuoso SDK core DRM handling. Thus if you do not choose to mi-
grate to the new support libraries, you will need to update your existing DRM related
code as some Penthera SDK DRM classes have changed while others have been
moved to new support packages.

ExoPlayer 2.11.x
Implementing apps will need to add the new Penthera Android ExoPlayer 2.11 support library manually,
or by adding to their build.gradle dependency configuration:

implementation "com.penthera:cnc-exoplayer-2_11-support:4.0.0'

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 30 CONFIDENTIAL - For Licensed Use Only

The debug library can be referenced in development as com.penthera:cnc-exoplayer-2_11-
support-debug:4.0.0

ExoPlayer 2.12.x
Implementing apps will need to add the new Penthera Android ExoPlayer 2.12 support library manually,
or by adding to their build.gradle dependency configuration:

implementation "com.penthera:cnc-exoplayer-2_12-support:4.0.0'

The debug library equivalent is com.penthera:cnc-exoplayer-2_12-support-debug:4.0.0

Legacy ExoPlayer and other players
If you need help integrating with older versions of ExoPlayer or with other players, please contact Pen-
thera Support.

Migrating from Penthera implementations prior to Penthera 4.0 Android SDK
If you have existing code supporting DRM with a pre-4.0 version of the Penthera SDK, but your imple-
mentation did not require any customizations to the example DRM code we provided, then your class
can be replaced entirely with our new support library implementation. The new library implementation
handles all offline DRM with no need for the previous classes which were based on our demo code, so
the new library class can be used as a wholesale replacement in your app code. The new class you
would use depends on the version of ExoPlayer you use, either com.penthera.virtuososdk.sup-
port.exoplayer211.ExoplayerDrmSessionManager for ExoPlayer 2.11.x or com.pen-
thera.virtuososdk.support.exoplayer212.ExoplayerDrmSessionManager for ExoPlayer
2.12.x.

Errors with DRM License Durations on Android 8
There is a known issue with Android 8.x devices which can cause the "license duration remaining" to be
reported from the Android MediaDrm component as 0. On buggy devices the duration will report as zero
even immediately after the offline license has been retrieved, when there should be ample duration left
for playback, such that opening the license in the DRM framework and starting a player should other-
wise result in fully functional playback.

Because the SDK is properly adhering to the erroneous value being reported by Android 8, if the SDK is
being used for key management then by default it will stop playback in this case because it interprets
the license to be expired. The Penthera SDK now provides a manifest meta-data option which can be
declared true to request the SDK to bypass the checks in the circumstance of Android 8.x and license
duration == 0, but where playback duration is greater than 0. The manifest option can be set as in this
example:

<!-- Enable Penthera DRM fix for Android O -->
<meta-data
android:name="com.penthera.virtuososdk.client.drm.android_o_license_allowed"
 android:value="true" />

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 31 CONFIDENTIAL - For Licensed Use Only

NOTE
Note that on the subset of Android 8.x devices which exhibit this DRM bug, some ver-
sions of popular players (e.g., ExoPlayer and others) and/or their default DRM session
components may ignore the zero license duration reported by Android, and may allow
playback when technically they should prevent it. Depending on the vendor and ver-
sion, you may find varying results from their player and default DRM session. This can
be confusing to you as the app developer, because our SDK will accurately report a
problem even though such keys may still enable playback on some versions of popular
players.

The Penthera SDK relies in part on a valid remaining license duration to determine
when to refresh DRM keys for maximum offline playback capability. Unless you choose
to enable the workaround we have provided, on these buggy Android 8.x devices the
Penthera SDK will continue to accurately report that the provided DRM key has no
usable license duration remaining, and our SDK will prevent offline playback. On the
problematic devices there is no way to receive a license which is technically valid for
playback. If you need to support the problematic Android 8.x devices in your market,
you will want to enable our provided workaround. With the workaround enabled, our
SDK will substitute "playback duration remaining" for the missing "license duration re-
maining," and will make its DRM refresh decisions based on that value.

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 32 CONFIDENTIAL - For Licensed Use Only

Extended Features

FastPlay: Android
FastPlay is a feature which provides instantaneous playback of streaming videos. FastPlay eliminates
the frustrating time your user would spend waiting for the player to buffer enough video to start play-
back. This provides a vastly improved experience when browsing your video catalog, and should also
be applied to popular and featured videos which you highlight in your app UI.

As soon as it seems your user might be interested in playing a given streaming video, such as when
that video is featured in your UI or when the user opens the detail page of a video, you should construct
a FastPlay-enabled asset. You do not need to add FastPlay-enabled assets to your download queue.
The SDK will immediately download and parse that manifest, and download the opening few seconds of
the video. If the user then chooses to hit "play," you initiate playback of the FastPlay-enabled asset just
as you would for an asset that had been added to the download queue. The opening seconds of the
video play instantly, because they have already been downloaded to the local device, and when those
opening seconds are exhausted the player automatically and seamlessly transitions into the buffered
online stream. This allows your player to buffer a substantial amount of the video, with little or no wait to
start playback.

If you have implemented even the most basic download features of the Penthera SDK, you can Fast-
Play-enable your application with very simple code. You construct the asset in the same manner as for
an asset you wish to add to the download queue, except you set a flag to enable FastPlay, and do not
add that asset to the download queue.

For example:

MPDAssetBuilder mpdAsset = new MPDAssetBuilder()
 .manifestUrl(myManifestURL)
 .desiredVideoBitrate(1927853)
 .desiredAudioBitrate(0)
 .assetId(remoteId)
 .usesFastPlay(true)
 .addToQueue(false);

IAssetManager assetManager = mVirtuoso.getAssetManager();
assetManager.createMPDSegmentedAssetAsync(mpdAsset.build());

Hold the asset reference in your Activity instance, and the SDK will silently prepare for FastPlay. When
the user wants to start playback, check the asset to see if it is FastPlay-ready, and if so you initiate play-
back with the same code you would if the asset was from the download queue. See Play Downloaded
Content: Android for additional details.

If the user has requested playback so soon that FastPlay is not yet ready, you simply fall back to play-
ing the video direct from the online manifest as you would have without FastPlay.

if (mpdAsset.fastPlayReady()) {
 URL fastplayAssetURL = mpdAsset.getPlaybackURL();
 //initiate playback using the fastplayAssetURL
} else {
 //fastplay not ready, so release that reference
 mpdAsset = null;
 //now initiate playback with the online manifest URL instead
}

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 33 CONFIDENTIAL - For Licensed Use Only

That is all that is required. The fastPlayReady() test is sufficient to know whether FastPlay prepara-
tions are complete when your user presses a button to start playback.

Auto-download
The Auto-download feature allows you to define any set of content as a playlist, and as the user finishes
with one item in the playlist, another item will automatically be downloaded for them. Using Auto-down-
load is an easy way to keep desirable content available on your users' devices.

You might engage Auto-download when your user chooses to download any episodic content, or pro-
vide the option after they have watched an episode of a series. You may provide an opt-in or opt-out
approach. However you integrate the feature with your user experience, it becomes easy for the user to
start following a series of content.

For episodic seasons, workout videos, news segments, movie trilogies, and other serial content, the
next item defaults to the subsequent episode. You can even append dynamically to a playlist as new
episodes are released, so Auto-download works for active series as well as completed seasons & con-
tent. Regardless, it is easy to provide a simple toggle in your UI to enable and disable Auto-download.

While there are various configuration parameters to tweak Auto-download behaviors, our default set-
tings cover most needs. The Auto-download feature does not require server-side integration with the
Penthera Cloud. The required code is minimal and is only in the client app. If you have episodic content
defined in your catalog you already have all the necessary metadata.

All your client app needs to do is:

• Register lists of Asset IDs with the PlaylistManager in our client SDK
• Implement the IPlaylistAssetProvider interface to allow the SDK to resolve each asset ID into

a VirtuosoPlaylistAssetItem when it is time to download the next asset in the playlist
• Implement the getPlaylistProvider() method of an IBackgroundProcessingManager and

register the IBackgroundProcessingManager with the SDK via AndroidManifest.xml, which
is how the SDK accesses your IPlaylistAssetProvider implementation

Once a playlist is defined in the app, when an asset contained in the playlist is watched and then de-
leted, the next available asset which is not already on the local device is queued for download. When
Auto-download is enabled, each watched & deleted asset in a playlist will queue another unless one of
the following occurs:

• the user has reached the end of the playlist,
• the user cancels the next asset while it is downloading,
• the user deletes the asset without watching it,
• your app code calls our "delete-all" method (see note one below),
• the asset expires without being played (see note two below), or
• the user manually disables the Auto-download feature in your UI (if you give that option)

This leads to an intuitive experience for the user. In fact, if the user manually downloads more than one
asset from the same active playlist, the SDK will seek to keep that many episodes of the playlist availa-
ble locally.

If the user has watched the last item in a playlist, when you add a new item to that playlist the new
episode will immediately queue for download, so the user can follow an active series with no further ef-
fort!

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 34 CONFIDENTIAL - For Licensed Use Only

NOTE
Note one: In a future release the design will simplify such that even a delete-all can
trigger Auto-download.

NOTE
Note two: Any expiry without playing the asset will never trigger an Auto-download.
When a played asset reaches its expiry-after-play deadline, Auto-download can down-
load an item from a playlist.

However, in this first release of the Auto-download feature if a played asset happens to
reach its expiry-after-download deadline before its expiry-after-play deadline, Auto-
download does not engage. In a future release the design will simplify slightly such
that any expiry of a played asset can trigger Auto-download.

Implement the IPlaylistAssetProvider
The getAssetParamsForAssetId(...) method of IPlaylistAssetProvider allows the SDK to
translate the desired episode Asset ID into the VirtuosoPlaylistAssetItem which will be used to
instantiate the IAsset.

You will implement the provider method, implement a trivial getPlaylistProvider method of an
IBackgroundProcessingManager, and register the IBackgroundProcessingManager within
your android manifest. Once those pieces are in place in your app, your delegate code will be called to
create assets in the playlist whenever appropriate.

First, the IPlaylistAssetProvider:

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 35 CONFIDENTIAL - For Licensed Use Only

class MyPlaylistProvider : IPlaylistAssetProvider{
 override fun getAssetParamsForAssetId(assetId: String?):
VirtuosoPlaylistAssetItem {
 //this method is called by the SDK to request the asset parameters
for an asset ID that is associated with a playlist
 //this is called when preparing to add a new item to the download
queue for a playlist
 var ret :VirtuosoPlaylistAssetItem
 val assetInfo = MainActivity.ASSET_MAP[assetId];
 assetInfo?.let{
 val params = HLSAssetBuilder().apply {
 assetId(assetId)
 manifestUrl(URL(it.second))
 addToQueue(true)
 desiredVideoBitrate(Int.MAX_VALUE)
 withMetadata(it.first)//Here we supply a title.
 }.build()
 return
VirtuosoPlaylistAssetItem(Common.PlaylistDownloadOption.DOWNLOAD,params)
 }
 return
VirtuosoPlaylistAssetItem(Common.PlaylistDownloadOption.TRY_AGAIN_LATER,
null)
 }

 override fun didProcessAssetForPlaylist(asset: IIdentifier?,
playlistName: String?): IIdentifier {
 //this method notifies the app that an asset has been downloaded
for a playlist
 return asset!!;
 }
}

Next, the IBackgroundProcessingManager:

class MyBackgroundProcessingManager : IBackgroundProcessingManager {

 ...

 override fun getPlaylistProvider(): IPlaylistAssetProvider {
 return MyPlaylistProvider()
 }
}

and finally, the Android manifest:

<meta-data
 android:name="com.penthera.virtuososdk.background.manager.impl"
 android:value="com.myco.myapp.MyBackgroundProcessingManager" />

Register a Playlist
Now that the SDK can use your IPlaylistAssetProvider to create assets whenever needed, you
simply need to declare playlists when appropriate. To register a playlist with the SDK:

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 36 CONFIDENTIAL - For Licensed Use Only

val plConfig = PlaylistConfigBuilder().apply{
 withName("MY_PLAYLIST")
 requirePlayback(true) //true is also the default
 considerAssetHistory(false) //false is also the default
 searchFromBeginning(false) //false is also the default
}.build()

//create playlist with list of asset ids
virtuoso.assetManager.playlistManager.create(plConfig,
mutableListOf("assetId1","assetId2","assetId3"))

Once the playlist is registered, if the user downloads, watches and deletes episode one, the SDK will
automatically download episode two, and so on.

Grow a Playlist
To add an episode to an existing playlist:

val playlist = virtuoso.assetManager.playlistManager.find("MY_PLAYLIST")

playlist.append("assetId4")

virtuoso.assetManager.playlistManager.append(playlist)

TIP
For active seasons of episodic content, use the append feature when a new episode is
available. If the user is caught up on the existing episodes, the new episode will auto-
matically download to their device!

Advertising Support: Android
Beta support for client- or server-side advertising definitions is present in the SDK, but is disabled by
default. This prevents unnecessary setup and processing for customers who are not using this feature.
The following meta-data statements can be added to the manifest to enable the feature:

<!-- Enable Penthera Ad support -->
<meta-data android:name="com.penthera.virtuososdk.adsupport.enabled"
 android:value="true" />

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 37 CONFIDENTIAL - For Licensed Use Only

LOW BATTERY IMPACTS VARIOUS FEATURES
The SDK battery threshold value in ISettings impacts the SDK download behavior,
but device battery level impacts other SDK behaviors which are not controllable by the
SDK's ISettings value. Various functions of the SDK are implemented as Android
OS Workmanager tasks which are configured not to run whenever "battery is low". The
battery level which Android OS Workmanager considers "low" is commonly set to 20%
and is not under control by the SDK. Thus, independent of the SDK ISettings value
you may see the following SDK functions delayed whenever the OS determines the de-
vice is in a low-battery state:

• Execution of Expiry actions
For assets with SDK expiry values the SDK will still prevent playback of expired as-
sets, but the automatic removal of the expired asset files from disk may be delayed if
device battery is low.

• Automatic refresh of Ads
• Timed refreshes of DRM (refreshes requested manually by your code will still occur)

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 38 CONFIDENTIAL - For Licensed Use Only

What Next?

Browse through the example projects in the Tutorials directory of the SDK distributions. The ReadMe
files explain what capabilities are covered by each example. The examples are available in various pro-
gramming languages, and can easily be built & run in your IDE. When running the examples, use the
demo/development keys and URL we have provided you for the Penthera Cloud.

In the SDK distribution, look for additional API details in the code-level documentation (javadoc for An-
droid, header docs for iOS).

The following publications may also be of interest. These can be read online in the Penthera ZenDesk
instance, and are also available as PDFs.

201: Developing with the iOS SDK (PDF, Penthera online support)

202: Developing with the Android SDK (PDF, Penthera online support)

301: iOS SDK Beyond the Basics (PDF, Penthera online support)

302: Android SDK Beyond the Basics (PDF, Penthera online support)

203: Best Practices (Penthera online support)

312: Known Issues (Penthera online support)

Penthera 302: Android SDK Beyond the Basics

Copyright © 2021 Penthera Partners 39 CONFIDENTIAL - For Licensed Use Only

https://docs.penthera.com/latest/201
https://support.penthera.com/
https://docs.penthera.com/latest/202
https://support.penthera.com/
https://docs.penthera.com/latest/301
https://support.penthera.com/
https://docs.penthera.com/latest/302
https://support.penthera.com/
https://support.penthera.com/
https://support.penthera.com/

	Penthera 302: Android SDK Beyond the Basics
	Table of Contents
	Intermediate Topics
	Configure Device-level Download Behaviors: Android
	Notification of Account & Asset Permissions Violations in Android

	Download Ancillary Files: Android
	Enable/Disable Other Devices: Android
	Push Notifications: Android
	IPushRegistrationObserver: Android
	Fixing Firebase Cloud Messaging errors: Android

	Availability Windows for Assets: Android
	Mark an Asset as Expired: Android

	Error handling for MIME types
	MIME type error behavior
	Configuring MIME type settings

	Advanced Topics
	Upgrading the SDK: Android
	Database Versioning: Android
	Upgrading to Penthera 4.0 Android SDK

	Observing and Interacting with Asset Creation & Queuing
	Observing Manifest Parsing Results with ISegmentedAssetFromParserObserver: Android
	Observing Queue Additions with IQueuedAssetPermissionObserver: Android
	Observing or Modifying Manifest Parsing with IManifestParserObserver: Android
	Resolution-based Manifest Filtering
	Custom Manifest Filtering

	Android occasionally changes the proxy port
	Using Cursors to Access Assets

	DRM Setup: Android
	Retrieve and Persist Widevine Licenses: Android
	Playout with Widevine Persisted License: Android
	Errors with DRM License Durations on Android 8

	Extended Features
	FastPlay: Android
	Auto-download
	Implement the IPlaylistAssetProvider
	Register a Playlist
	Grow a Playlist

	Advertising Support: Android

	What Next?

