
Penthera 301: iOS SDK
Beyond the Basics

iOS SDK 4.4

December 9, 2024
Advanced development documentation for Penthera iOS SDK 4.4. Covers intermediate and advanced

topics, as well as extended SDK features.

Copyright © 2024 Penthera Partners

CONFIDENTIAL - Licensed Use Only

Table of Contents
Intermediate Topics .. 3

Configure Device-level Download Behaviors: iOS .. 3
Download Ancillary Files: iOS ... 5
Enable/Disable Other Devices: iOS ... 5
Push Notifications: iOS .. 6
Availability Windows for Assets: iOS ... 8

Advanced Topics ... 10
Upgrading the SDK: iOS .. 10
Observing Manifest Parsing: iOS .. 10
Resolution-based Manifest Filtering .. 10
Custom Manifest Filtering ... 11

Digital Rights Management (DRM): iOS .. 12
Apple FairPlay DRM .. 12

Configure FairPlay DRM .. 12
Utilize FairPlay Assets ... 13
Extended FairPlay Server Requirements ... 14

Google Widevine DRM: iOS ... 14
Extended Widevine Server Requirements ... 15

DRM Extensions: iOS .. 15
Enhancing DRM with the VirtuosoLicenseManager .. 15
Extending DRM with a VirtuosoLicenseManagerDelegate 15
Extending DRM with a VirtuosoLicenseProcessingDelegate 17
AVAssetResourceLoaderDelegate and AVContentKeySession 18
Using BuyDRM or CastLabs DRM .. 19

Extended Features .. 20
FastPlay: iOS .. 20
Auto-download and Penthera Playlists .. 21

Behavioral Modes .. 21
Auto-download playlist ... 22
FastPlay playlist mode (iOS-only) ... 25

What Next? ... 26

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 2 CONFIDENTIAL - For Licensed Use Only

Intermediate Topics

Configure Device-level Download Behaviors: iOS
The SDK obeys several device-level behavioral settings. You may access and configure these settings
through the VirtuosoSettings instance:

maxDownloadedAssetsOnDevice: Maximum number of assets that may be downloaded on this de-
vice at any given time. Any assets added to the queue beyond this limit will be blocked until existing
assets are deleted. (default=100)

maxStorageAllowed: Maximum disk space that the SDK will use on the device. While downloading
in the foreground, the SDK will cease download if it reaches maxStorageAllowed, even if that means
stopping with a partially-completed file. While downloading in the background, the SDK will not initiate
a download unless, after downloading that item, the total device storage used by the SDK will still be
under maxStorageAllowed. (in MB; default=LONG_LONG_MAX)

headroom: Storage capacity that the SDK will leave available on the device. While downloading with
the app in the foreground, the SDK will cease download if the headroom space is all that remains on
the device, even if that means stopping with a partially downloaded item. When downloading in the
background, the SDK will not initiate a download unless, after downloading that item, at least headroom
space will still be free on the device. (in MB; default:1024)

NOTE
This diagram illustrates the relationship between maxStorageAllowed and head-
room parameters. The SDK will always preserve a minimum free space on disk
(“headroom”). In the first scenario the device has ample total available storage, so the
SDK storage would be capped only by its maxStorageAllowed. In the second sce-
nario, the device is beginning to fill up with other apps and is running low on available
storage, so the SDK headroomrequirement is restricting storage usage by the SDK. In
the second scenario the SDK is no longer allowed to reach its maxStorageAllowed
due to a lack of total available storage on the device.

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 3 CONFIDENTIAL - For Licensed Use Only

NOTE
Once you have received a blocked state from the observer, you can call [engine
diskStatusOK] which returns a boolean, indicating whether the SDK is blocked on
disk/storage restrictions or something else.

Alternatively, you could also check [VirtuosoAsset allowableStorageRemain-
ing], which in that state will return 0.

Note that having insufficient space on the device is not considered to be a permanent
fatal error, and so the SDK will continue its attempt to complete downloads once
space has become available. For a headroom issue, downloads may continue after the
deletion of anything on the device which provides more headroom. For a max storage
issue, downloads may continue after removal of previously-downloaded items.

NOTE
Without knowing the file sizes ahead of time, or hosting content with a constant bitrate
it can be extremely difficult to estimate file sizes. The estimated file size for videos is
based on the selected bitrate to download and the duration of the asset. The SDK uses
that information to calculate the initial expected size. Once download starts, we take
the existing downloaded segments and create an "average segment size" for each
segment type (audio, video, etc.) and then calculate an estimate based on the total
number of segments multiplied by the average downloaded segment size. Naturally,
with this approach, the estimated size will become more accurate over time.

downloadOverCellular: (default=NO) Whether the SDK is permitted to download over a cellular net-
work. This value is a permission, and does not guarantee that downloads will continue on acellular
network. It only indicates the the SDK may download over cellular, should internal business rules allow
it. If this value is NO, downloads will never happen over a cellular connection.

destinationPath: An additional relative path component added to the enclosing app’s Documents
directory. The SDK will store all downloaded files here. By default, the SDK stores all downloads in the
Documents directory itself, under appropriate sub-directories.

TIP
The iOS SDK, with permittedSegmentDownloadErrors on VirtuosoSettings,
allows to configure the SDK to tolerate a non-zero number of segment failures before
marking the asset as failed. See VirtuosoSettings.h for this and other related
settings.

TIP
The Penthera iOS SDK has a read-only class-level property on VirtuosoAsset to read
the downloadRetryLimit, which is set to 2.

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 4 CONFIDENTIAL - For Licensed Use Only

Download Ancillary Files: iOS
The Penthera SDK provides the ability to download arbitrary additional files, which are managed by
the SDK within the same lifecycle of the related asset. When the asset is later removed from the user
device, the SDK will also automatically clean up the related ancillary files.

You may indicate ancillary files when you are configuring to construct your asset:

VirtuosoAncillaryFile *poster = [[VirtuosoAncillaryFile alloc]
initWithDownloadURL:posterURLString andTag:@"poster"];

VirtuosoAncillaryFile *thumbnail = [[VirtuosoAncillaryFile alloc]
initWithDownloadURL:thumbnailURLString andTag:@"thumbnail"];

VirtuosoAssetConfig *myConfig = [[VirtuosoAssetConfig alloc]
initWithURL:myAssetURLString assetID:myAssetID description:myDescription
type:kVDE_AssetTypeHLS];

[myConfig setAncillaries:@[poster, thumbnail]];

VirtuosoAsset *myAsset = [VirtuosoAsset assetWithAssetConfig:myConfig];
//now when the asset is processed on the download queue, the ancillaries
will also be retrieved

Once the SDK has completed download of the asset, the ancillary files can be accessed from the
asset instance. You could access the ancillaries all at once with findAllAncillaries, but notice in
the example that tags were used when declaring the ancillary files. These tags can be used to easily
retrieve a specific ancillary file, such as poster images, ancillaries in other languages, or for any other
purpose.

NSArray<VirtuosoAncillaryFile*>* myPosters = [myAsset
findCompletedAncillariesWithTag:@"poster"];

Enable/Disable Other Devices: iOS
In addition to startup and shutdown of the Virtuoso engine on a given device, you also have the option
of enabling and disabling the download capability on a device. For example, if you use the Penthera
Cloud setting to limit the number of download-enabled devices a user is allowed on their account, you
may also want to provide the ability for your users to choose which of their devices is enabled for
download at any given time. To support this, the SDK can change the enable/disable setting for the
local device, or for any other device associated with the user’s account. The Penthera Cloud manages
which devices are download-enabled, and enforces the global “max download-enabled devices per
user” policy.

The example below shows how to retrieve the listing of User devices and change the download setting
on one of them. Notice that because the Penthera Cloud is involved in enforcing your business rules,
this code for enabling and disabling devices behaves differently if the local device is offline or not
authenticated when the request is made.

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 5 CONFIDENTIAL - For Licensed Use Only

NSString *anExternalIdToMatch = @“AN_EXTERNAL_ID”; //device we wish to
change

NSArray *userDevices = [[VirtuosoDownloadEngine instance] devices];

 ... // find the device with matching external ID

[matchingDevice updateDownloadEnabled:FALSE onComplete:^(Boolean success,
NSError *error){
 //handle success or failure
}];

TIP
If a request to enable or disable a remote device is made while the remote device is
offline, the state change is still recorded in the Penthera Cloud and will propagate to
the remote device when it syncs with the Penthera Cloud. In general the impact on a
remote device may experience various delays if the remote device is offline, if syncing
is delayed for any reason, or if push notifications are delayed. As long as the device
is eventually brought online and the SDK is running, it will eventually receive the state
change.

Push Notifications: iOS
While not required, we do recommend integration of push notification messaging as it can produce the
most timely execution of some Penthera features. Note that push notifications are not used by Penthera
to pop up user messages in your mobile app UI; the SDK uses push notifications to receive internal
messages from the Penthera Cloud.

For iOS devices, the Penthera Cloud can use Apple Push Notifications (APN) to send messages to the
SDK which trigger certain actions (e.g., download and delete). What follows explains the basic steps for
enabling APN with the Penthera SDK. For broader coverage of how APN works, see Apple's developer
documentation.

Provide APN config to the Penthera Cloud
Log in to the Penthera Cloud admin console and provide your APNS configuration information.

Register device push tokens with SDK
To send a push message to a specific device, the Penthera Cloud (or "backplane") needs to know
the push token from your app running on that device. The Penthera SDK will inject code into your
AppDelegate chain to feed push tokens to the SDK, so the SDK can upload them to the Penthera
Cloud. You do not need to write additional code for that process.

Handling Received Push Notices
From time to time, a server (the Penthera Cloud or possibly another server associated with your app)
may send your app an APN message. Upon arrival the APN message is delivered to well-known meth-
ods in your UIApplicationDelegate class, otherwise known as the AppDelegate, as according to Apple
documentation. A typical implementation of those AppDelegate methods will dispatch the message to
whatever app code should handle it. The Penthera SDK will automatically inject (aka, "swizzle") the
necessary code into your AppDelegate chain so that you do not need to write any custom code to route
Penthera APN messages to the Penthera SDK. If your ecosystem is sending additional APN messages
to your app which are not sent by the Penthera Cloud, these will not be handled by the Penthera SDK,

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 6 CONFIDENTIAL - For Licensed Use Only

and will continue to route to the methods in your AppDelegate implementation so your code can handle
them as expected.

IMPORTANT
If you use push notifications within your app for other purposes, to ensure your push
notifications work well together with the push notification handling performed automat-
ically by the Penthera SDK, make sure you implement your push notification han-
dling with Apple's recommended didReceiveRemoteNotification:fetchCom-
pletionHandler: approach.

IMPORTANT
The automatic injection of APN handling code by the Penthera SDK is new as of SDK
4.0. If you are upgrading from versions of the Penthera SDK prior to 4.0, and you were
already handling Penthera APN messages, see Upgrading the SDK: iOS [10] for info
about what you should remove from your existing code during your upgrade.

PERFORMANCE WITH PUSH NOTIFICATIONS
For performance reasons, Penthera batches up "push notice jobs" into groups, and the
job processor fires them at intervals. The default interval is every 5 minutes. When the
push notices go out from the server, the platform push service accepts them and then
they may be delivered, or not.

For instance, some push messaging providers reserve the right to delay push notices
until "convenient" times for the device, which could be a device unlock or when the
device starts up its wifi / cellular radio. So there can be a delay between the push being
sent to the push notification provider and the actual push notice getting to the device.
In addition, on some systems pushes are delivered quickly when the user is frequently
using your app, but are delivered "less quickly" (the timing of which is imprecise) when
a user less frequently uses your app.

Push notice delivery is also not guaranteed. Because push messaging is not a guaran-
teed service, the commands that Penthera sends in the push notice are also sent down
to the device during application syncs.

If the device misses a push for some reason, the next time the SDK syncs with the
backplane server, it will pickup whatever commands it missed and process them at that
time.

The Penthera iOS SDK limits sync frequency to no more than one sync every 15
minutes. If a sync has not already happened within that time window, a sync will be
attempted if the app starts, if the app connects to a network, if the SDK receives a
push notification, or if a background wake occurs during background downloading.

Apple's push notification system is one which may delay push notifications. We rec-
ommend implementing the "background fetch" feature on iOS to allow for syncs to
happen occasionally when the app is backgrounded, although the timing of those is not
guaranteed by Apple.

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 7 CONFIDENTIAL - For Licensed Use Only

Availability Windows for Assets: iOS
The 'Availability Window' governs when the video is actually available for playout by the user. The SDK
enforces several windowing parameters on each video:

Table 1. Parameters for Availability Windows
Windowing Parame-

ter
Description

Publish Date The SDK will download the video as soon as possible, but will not make the video available through any
of its APIs until after this date.

Expiry Date The SDK will automatically delete the video as soon as possible after this date.

Expiry After Download
(EAD)

The duration a video is accessible after download has completed. As soon as possible after this time
period has elapsed, the SDK will automatically delete this video.

Expiry After Play
(EAP)

The duration a video is accessible after first play. As soon as possible after this time period has
elapsed, the SDK will delete this video. To enforce this rule, the SDK has to know when the video is
played, so be sure to register a play-start event when the video is played.

The Penthera Cloud stores a global default value for EAP and EAD. You may set these values through
the Penthera Cloud web UI. The Cloud transmits these default values to all SDK instances. Defaults
provided by the Penthera Cloud can be overridden by values provided to the SDK by your app.

Typically, a Content Management System (CMS) stores the windowing information for an item, and
communicates it through a web API to the enclosing app. The app then feeds this windowing informa-
tion to the SDK:

Overriding defaults with asset-specific values is performed when you create the VirtuosoAsset object.
You can also modify some of the values later, via the appropriate properties.

VirtuosoAssetConfig *config = [[VirtuosoAssetConfig alloc]
 initWithURL:@"http://path/to/your/asset.mp4"
 assetID:@"your_unique_asset_id"
 description:@"Test Video"
 type:kVDE_AssetTypeNonSegmented];

// Available now
config.publishDate = [NSDate date];

// Expires in 7d
config.expiryDate = [NSDate dateWithTimeIntervalSinceNow:604800];

// Expires 24h after download
config.expiryAfterDownload = 86400;

// Expires 12h after play
config.expiryAfterPlay = 43200;

[VirtuosoAsset assetWithConfig:config];

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 8 CONFIDENTIAL - For Licensed Use Only

Each of the SDK's content lookup methods (e.g. assetsWithAvailabilityFilter:) contains an
availabilityFilter parameter. Set this parameter to YES to filter for only items still valid given
windowing constraints. Set the parameter to NO to list all items, regardless of windowing.

The SDK will delete a video as soon as possible after the video expires. Also, when a caller tries to
access an expired item via the API, any downloaded files associated with that item will be auto-deleted
from disk, calls to play the item via the VirtuosoClientHTTPServer will fail, and any attempts to access
the local file URLs will return nil.

NOTE
The expiry date can be changed remotely after an asset has been downloaded to disk,
but the expiryAfterDownload and expiryAfterPlay values cannot.

NOTE
The Penthera SDK has an internal secure clock implementation that is entirely inde-
pendent of the local clock time. The secure clock time is based on a combination of
NTP calls and Penthera Backplane time stamping for "ground truth time" combined
with tracked differentials of the system "up-time clock". All expiry calculations are done
against this internal secure clock, and expiry is independent of the local clock settings.
On both iOS and Android, you can check what the SDK secure clock is set to by using
the public interfaces.

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 9 CONFIDENTIAL - For Licensed Use Only

Advanced Topics

Upgrading the SDK: iOS
Unless the release notes indicate otherwise, SDK versions are back-compatible with older versions. If
you had previously deployed a version of your app using an earlier version of the SDK, then the old da-
ta store will automatically be upgraded to the new data store. There are a few important considerations
for handling of this process:

Asynchronous Update
Depending on how many assets the user has created in the app, the upgrade process may take
a fair amount of time. To ensure that you can startup the engine without worrying about thread
considerations, the SDK upgrades the data store in a background process. This allows your app to
appear fully functional to the user, but it does mean that while the upgrade process is proceeding,
previously-downloaded assets may be unavailable.

The VirtuosoDownloadEngine will issue two notifications via NSNotificationCenter to indicate when the
upgrade process is starting and when the upgrade process has finished:

extern NSString* kDownloadEngineDidBeginDataStoreUpgradeNotification;
extern NSString* kDownloadEngineDidFinishDataStoreUpgradeNotification;

You can use these notifications as a trigger in your user interface to indicate to the user that previously
downloaded assets are temporarily unavailable.

Download Continuity
All asset metadata will be fully available as soon as the data upgrade process completes. Any assets
that had already been downloaded will be immediately available for offline playback. Any assets that
had not started downloading yet will remain enqueued and will download normally.

Observing Manifest Parsing: iOS
It is possible to be notified when manifest parsing completes for a newly instantiated VirtuosoAsset.
When constructing the asset, use the assetWithConfig:onReadyForDownload:onParsingCom-
plete: method of VirtuosoAsset. Pass the appropriate completion block into the onParsingCom-
plete parameter.

Note that the engine is optimized such that for manifest-driven asset it may begin download before the
manifest is completely parsed. Thus you may receive a callback to onReadyForDownload completion
blocks before onParsingComplete completion blocks.

Resolution-based Manifest Filtering
Apps may wish to limit the size of downloaded assets to something less than the maximum quality
available in their asset manifests. It is common (and recommended) practice to achieve this by telling
the SDK to target a maximum video bitrate, as discussed elsewhere in our SDK documentation.

Bitrate targets have various advantages over resolution targets, including resilience to catalog changes
over time. As encoding technology improves, higher resolutions become available at lower bitrates, and
catalogs sometimes acquire assets in entirely new rendition formats which do not fit into the anticipated
resolution sets.

Frequently a target bitrate will be used to control the downloaded asset rendition even when the variety
of available renditions are generally associated with various video resolutions. This is achieved by
identifying a simple clustering of catalog bitrates around comparable resolutions, and selecting target
bitrate options which reflect a comfortable ceiling for each cluster.

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 10 CONFIDENTIAL - For Licensed Use Only

Occasionally an asset catalog will still consist of renditions which the app wishes to filter by their stated
video resolutions rather than by bitrates.

Beginning with the Penthera iOS SDK 4.2.0.2 you may target a set of allowed resolutions by providing
an array of desired resolutions to the resolutions property of VirtuosoAssetConfig instances as
you are constructing assets.

The resolution set must be expressed as one or more strings in the form <width>x<height> which
is in keeping with the MPD and HLS specs. If multiple renditions match in a given asset, bitrate rules
will be applied to make the final determination. Remember that any codec or language filters which you
have applied may also be limiting what renditions are available.

Custom Manifest Filtering
In the event your manifest rendition selection cannot be achieved with either the bitrate or resolution
filtering built into the Penthera SDK, the SDK also offers a delegate you may implement to take
complete control over rendition selection.

Beginning with the Penthera iOS SDK 4.2.0.3 you may implement a VideoRenditionSelectionDe-
legate and register an instance of that delegate statically with the VirtuosoAsset class. This should
be done prior to constructing new HLS asset instances for download. Your delegate's selectRen-
ditionFromAvailableRenditions method will receive an array of VirtuosoVideoRendition
instances representing the renditions available in each HLS manifest, and should return the item from
the list which represents the rendition the SDK should use. The available details of each rendition
include properties of the related manifest such as averageBandwidth, resolution, codecs, and more.

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 11 CONFIDENTIAL - For Licensed Use Only

Digital Rights Management (DRM): iOS

The Penthera SDK provides out-of-box support for Apple FairPlay (iOS 10+) and Google Widevine (iOS
8+) DRM, together with a mechanism to easily provide custom support for specialized DRM server
requirements as necessary. With a few easy steps, the SDK will not only manage retrieval of DRM
for you, it will also manage the lifecycle of keys for various assets, including refreshing the keys at
appropriate intervals to ensure the best likelihood that keys are valid for offline playback when your user
desires it. At playback, the SDK runs a local proxy server which provides the DRM keys and the video
assets, so that SDK-managed keys are provided to your player of choice whenever necessary.

If you are using Penthera’s built-in FairPlay or Widevine support you may not need additional code to
fetch or persist DRM licenses. Providing little more than the URL of your DRM server, the SDK can
automatically request a cacheable license when the download starts and will attempt to renew it when
the download finishes. The SDK will also automatically delete DRM licenses when the asset is deleted.

A DRM server may also require special formatting or tokens in the request and/or response, so the
SDK allows your implementation to provide increasing levels of custom configuration to meet common
needs. For the most extreme cases you can create a deeply custom implementation which performs all
the server interaction within the DRM and asset management framework provided by the SDK.

While not preferred, it is even possible in extreme cases to handle DRM license retrieval in your own
code, and provide the licenses to the SDK to manage alongside the assets. For many DRM systems
other than FairPlay and Widevine, no custom integration is necessary.

CAUTION
If you must handle DRM license retrieval with entirely custom code, we recommend
that you fetch the DRM license before you tell the Penthera SDK to queue an asset
for download. That way, you can be sure the DRM license is on the device when the
video download finishes. If you wait until the video download finishes before fetching
the license, you may run into trouble. If the asset download finishes while the app is in
the background, your app may not have an opportunity to download the license before
the device goes offline and the app can’t fetch the license.

Apple FairPlay DRM
The Penthera SDK can support FairPlay DRM with little more than the URL to retrieve the client Fair-
Play certificate, the URL of the FairPlay DRM server, and the URL of the manifest for FairPlay-protected
assets. Once provided with that information, the Penthera SDK supports offline playback of FairPlay-
protected videos, provided that your FairPlay license server is configured to grant the appropriate
permissions in the license.

Configure FairPlay DRM
Configuration of FairPlay with the SDK requires only to configure the client certificate URL and DRM
server URL.

Configure Client Certificate URL
Provide the URL where the SDK can download the client's FairPlay application certificate during appli-
cation startup:

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 12 CONFIDENTIAL - For Licensed Use Only

[VirtuosoLicenseManager
 downloadClientAppCertificateFromURL:<certificate_url>
 forDRM:kVLM_FairPlay];

Configure DRM Server URL
Provide the URL to your FairPlay License Server during application startup

[VirtuosoLicenseManager
 setLicenseServerURL:<license_server_url>
 forDRM:kVLM_FairPlay];

Utilize FairPlay Assets
To utilize FairPlay assets, you need to identify them as such when asking the SDK to download them,
and then play them back from the URL provided by the SDK.

Identify FairPlay Assets
When you start a new download by constructing a VirtuosoAsset, pass kVDE_AssetProtection-
TypeFairPlay as the protectionType parameter to identify that asset as using FairPlay DRM. In
addition to fetching the video assets, the SDK will send the raw encrypted SPC request and parse the
raw encrypted response. The queue for download procedure is discussed further in Queue an Asset for
Download: iOS.

Since it is typical for FairPlay metadata to be encrypted within the keys (and thus unreadable by the
SDK), you may supply our SDK with the key renewal date using the VirtuosoLicenseManagerDe-
legate defined in VirtuosoLicenseManager.h. Otherwise, if the device is online at the time of
playback, Apple will identify if a FairPlay license has expired and will make a renewal license call when
the user attempts to play it. See DRM Extensions: iOS [15] for more details on the VirtuosoLicenseMa-
nagerDelegate.

Playback FairPlay Assets
If you are using one of player classes provided by the Penthera SDK, there is nothing special necessary
for playback. Play assets just as indicated in Play Downloaded Content: iOS. The SDK will provide the
DRM key to the player.

Playback of FairPlay Assets in a Custom Player
If you require a custom player for your application you may use methods directly on the Virtuo-
soClientHTTPServer class to perform the steps that the player classes we provide in the SDK
would normally perform for you. These include instantiating a local playback proxy (the Virtuoso-
ClientHTTPServer instance) for a given asset, obtaining the local proxy URL the player will use for
playing the local asset, obtaining the local proxy URLs the player will use to obtain the DRM certificate
and DRM key, and finally calling shutdown on the local proxy when your custom player is done. Below
is specific guidance on how to playback FairPlay assets with a custom player.

1. Instantiate and hold a reference to an instance of our VirtuosoClientHTTPServer. The appro-
priate location for this is likely within a ViewController where you embed a player or from which you
will open a child view controller containing the player. Hold a reference to our server instance until
the user is done with playback.

//Have access to the VirtuosoAsset you wish to play
VirtuosoAsset *myAsset = ...

//Instantiate a local proxy server instance with your desired asset
VirtuosoClientHTTPServer *server = [[VirtuosoClientHTTPServer alloc]
initWithAsset:myAsset];

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 13 CONFIDENTIAL - For Licensed Use Only

2. Retrieve the playback URL and DRM URLs from the local proxy server instance you just created.
Use these to configure your custom player for playback, which enables the player to have access
to both the asset and DRM files being managed by the Penthera SDK.

if (server) {
 //The now-running server instance provides local proxy URLs for
playback and DRM

 NSString *licenseURL = [server fairPlayLicenseServerURL];
 NSString *certificateURL = [server
fairPlayCertificateDataURLForSubType:nil];
 //use these license and certificate URLs to configure DRM support in
your custom player

 NSString *playbackURL = [server playbackURL];
 //pass this playbackURL to your player

 //playback now happens in your player

} else {
 //returned nil because of some error… error would have been sent to
NSNotificationCenter
}

3. Later, after playback ends (e.g., player view closed), you want to shut down the instance of
VirtuosoClientHTTPServer. At this point you can release the server reference. You must hold
a reference to our server instance throughout playback, or our local proxy server will shut down
prematurely.

[server shutdown];

Extended FairPlay Server Requirements
Frequently, DRM servers use specially-formatted requests and responses, such as specialized JSON-
structured payloads, base-64 encoded elements, and custom parameters in the request string or head-
ers. For those cases, read our section on DRM Extensions: iOS [15]

Google Widevine DRM: iOS
The Penthera SDK automatically supports offline playback of Widevine-protected videos, provided that
your Widevine license server grants appropriate permissions for the license. Enabling Widevine support
requires only the following:

1. Include the Google Widevine framework in your project. Location widevine_cdm_sdk_re-
lease.framework in the ThirdParty directory of your Penthera SDK distribution. Drag and drop
the framework into your XCode project. Under the General section in “Embedded Binaries”, add the
widevine_cdm_sdk_release.framework to the list.

2. Configure your Widevine License Server during application startup:

[VirtuosoLicenseManager
 setLicenseServerURL:<license_server_url>
 forDRM:kVLM_Widevine];

3. When you start a new download, pass kVDE_AssetProtectionTypeWidevine as the protec-
tionType parameter.

If you are using one of Penthera SDK built-in player classes, that’s all you need to do.

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 14 CONFIDENTIAL - For Licensed Use Only

Extended Widevine Server Requirements
Frequently, DRM servers use specially-formatted requests and responses, such as specialized JSON-
structured payloads, base-64 encoded elements, and custom parameters in the request string or head-
ers. For those cases, read our section on DRM Extensions: iOS [15]

DRM Extensions: iOS
You have likely seen that the VirtuosoLicenseManager is involved in DRM configuration, where in
the simplest cases you provide the URLs for your DRM client certificate and your license server. This
class is also your starting point for further extending and customizing DRM support within the Penthera
SDK.

If your customization needs extend beyond what is capable with the VirtuosoLicenseManager, you may
need to extend the SDK license functions using the VirtuosoLicenseManagerDelegate, the Vir-
tuosoLicenseProcessingDelegate, or much less likely using the AVAssetResourceLoaderDe-
legate. Let us explore when you might need each of these mechanisms.

Enhancing DRM with the VirtuosoLicenseManager
First of all, note that various additional DRM features are possible using other methods on the Virtuo-
soLicenseManager API. With that API you can do things like:

• configure the SDK to simultaneously support various different DRM types, by providing different cert
and server URLs for various DRM types and subtypes,

• provide a client DRM cert manually, rather than having the SDK fetch it from a remote URL, in the
event you need to access or store your client cert in a custom manner,

• manually induce the download of an offline license key for an asset,
• manually induce the refresh of a license key,
• manually delete a license key from SDK management,
• provide a license key to the SDK for management which you acquired in a custom manner, and
• retrieve the managed license key for an asset, in case you need to manually provide it to a player in

some custom manner rather than letting the SDK provide it during playback.

All of those functions can be found in methods of the VirtuosoLicenseManager class as detailed in
the VirtuosoLicenseManager.h header.

Extending DRM with a VirtuosoLicenseManagerDelegate
The VirtuosoLicenseManagerDelegate is the most commonly used DRM extension point. This
delegate allows you to set a specific renewal date on an asset's license key, append a custom suffix
to the URL used to retrieve a license key, or add custom query parameters and request headers to the
license key request. In each case you have access to the asset, so your customizations can either be
generic to all requests (such as with a custom authentication token) or specific to the asset (such as
providing an asset ID).

The simplest way to achieve this is by implementing the lookupLicenseForAsset: method, which
returns a VirtuosoLicenseConfiguration instance containing your customizations. Implement the
delegate method, provide any necessary customizations, leave unused customizations nil, and register
your delegate with the VirtuosoLicenseManager:

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 15 CONFIDENTIAL - For Licensed Use Only

[VirtuosoLicenseManager setDelegate:self];

...

#pragma mark - VirtuosoLicenseManagerDelegate

-(VirtuosoLicenseConfiguration* _Nullable)lookupLicenseForAsset:
(VirtuosoAsset* _Nonnull)asset
{
 VirtuosoLicenseConfiguration *config =
 [[VirtuosoLicenseConfiguration alloc]
 initWithSuffix:nil
 renewal:nil
 parameters:@{@"paramToken": @"xyzzy12345"}
 headers:@{
 @"Content-Type": @"application/json; charset=UTF-8",
 @"headerToken": @"token54321"
 }
];
 return config;
}

You may alternatively implement the older form method on the same delegate, which is called during
license requests, and which provides values by implementing dereferenced parameters (leaving nil any
which are not needed):

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 16 CONFIDENTIAL - For Licensed Use Only

[VirtuosoLicenseManager setDelegate:self];

...

#pragma mark - VirtuosoLicenseManagerDelegate

- (void)lookupLicenseURLSuffix:(NSString * _Nonnull __autoreleasing *
_Nullable)urlSuffix
 andParameters:(NSDictionary * _Nonnull __autoreleasing *
_Nullable)customParameters
 additionalHeaders:(NSDictionary * _Nonnull __autoreleasing *
_Nullable)customHeaders
 renewalDate:(NSDate * _Nonnull __autoreleasing * _Nullable)renewalDate
 forAsset:(VirtuosoAsset * _Nonnull)asset
{
 // To customize elements of the DRM request, implement this method and
provide
 // any required modifications to the licensing properties according to
the provided asset.
 // For example:
 // *urlSuffix = @"asset-unique-suffix-for-drm";
 // Gets appended onto the end of the DRM license URL
 // *customParameters = @{@"key":@"value"};
 // key/value pairs that get added to the URL query string
 // *customHeaders = @{@"key":@"value"};
 // key/value pairs which become request headers
 // *renewalDate = [NSDate dateWithTimeIntervalSinceNow:48_HOURS];
 // Expected DRM renewal timestamp

 *customParameters = @{
 @"form": @"json",
 @"schema": @"1.0",
 @"account": @"http://someserver.com/data/Account/8675309",
 @"token": @"xyzzy12345"
 };
 *customHeaders = @{
 @"Content-Type": @"application/json; charset=UTF-8",
 @"myToken": @"token54321"
 };
}

Extending DRM with a VirtuosoLicenseProcessingDelegate
Sometimes your DRM license server may require special formatting of the request body, or extraction
of the key from within a custom response body. For example, the default request body contents of a
FairPlay server request are the raw bits of the SPC block, and the default response body contents are
the raw bits of the CKC. If your FairPlay server requires to submit the SPC as part of a custom JSON
request body, and/or returns the CKC embedded somewhere in a JSON response body, and/or requires
base64 encoding of the request or response, you may use a VirtuosoLicenseProcessingDele-
gate to achieve these customizations. If you do implement the VirtuosoLicenseProcessingDe-
legate, register your implementation with the SDK using setLicenseProcessingDelegate on
VirtuosoLicenseManager.

To access or modify the request and/or response bodies, implement the request and response customi-
zation methods of the VirtuosoLicenseProcessingDelegate:

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 17 CONFIDENTIAL - For Licensed Use Only

[VirtuosoDefaultAVAssetResourceLoaderDelegate
setLicenseProcessingDelegate:self];

...

#pragma mark - VirtuosoLicenseProcessingDelegate

/* Deconstruct any custom DRM CKC response to extract and return the
binary license data. Returning nil causes the complete original binary CKC
response to be used as-is. */
- (NSData * _Nullable)extractCKCForAsset:(VirtuosoAsset * _Nonnull)asset
 inLicenseResponse:(NSData * _Nonnull)ckcData
{
 //handle the response body here, returning nil or the CKC bits
}

/* Construct any custom DRM SPC request from the asset and the default SPC
(which is a pure binary Fairplay SPC). The NSData returned from this method
is POSTed to the license server as the request body. Returning nil causes
the original binary SPC to be used as-is. */
- (NSData * _Nullable)prepareSPCForAsset:(VirtuosoAsset * _Nonnull)asset
 inLicenseRequest:(NSData * _Nonnull)spc
{
 //handle the request body here, returning nil or the customized request
body
}

The VirtuosoLicenseProcessingDelegate also provides a custom method for determining the
CID. Normally, the asset CID is extracted from the FairPlay license URL, which takes the form: skd://
<contentID>. Some license servers put the required content ID elsewhere, so if necessary, imple-
ment the following method and return a CID value other than nil:

[VirtuosoDefaultAVAssetResourceLoaderDelegate
setLicenseProcessingDelegate:self];

...

#pragma mark - VirtuosoLicenseProcessingDelegate

/* Extract and return the desired content ID from either the provided asset
or from the default Fairplay request URL. */
- (NSString * _Nullable)extractCIDForAsset:(VirtuosoAsset * _Nonnull)asset
 fromFairPlayRequest:(NSURL * _Nonnull)fpRequest
{
 //return nil if the URL contains the CID in standard sky://<contentID>
form, or
 //return another value, for example, if the asset ID is the content ID
 return asset.assetID;
}

AVAssetResourceLoaderDelegate and AVContentKeySession
If you have reviewed the other DRM extensions in the Penthera SDK and do not see how to resolve
your custom DRM circumstances, contact Penthera Support. The SDK can support AVContentKey-
Session approaches, as well as custom AVAssetResourceLoaderDelegate implementations. It
is possible to leverage your own AVAssetResourceLoaderDelegate to serve as a child delegate
to our default implementation VirtuosoDefaultAVAssetResourceLoaderDelegate, or even as

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 18 CONFIDENTIAL - For Licensed Use Only

a direct replacement if necessary. This is a more complex process, which is rarely required, but if it
seems necessary please contact us first. We can help confirm it is actually necessary, and can assist
you with the implementation.

Using BuyDRM or CastLabs DRM
As part of the SDK we also ship with support for two highly customized DRM adapters, one each for
use with BuyDRM and CastLabs DRM servers. If you are using either of those DRM systems, you will
replace our default VirtuosoDefaultAVAssetResourceLoaderDelegate with either our BuyDRM
or CastLabs AVAssetResourceLoaderDelegate, which also we ship in the SDK. These are injected
into the SDK similar to how you would use an entirely custom AVAssetResourceLoaderDelegate.
For example:

1) Configure your FairPlay cert and CastLabs URLs. This is usually done in your appDidFinish-
Launching method.

[VirtuosoLicenseManager downloadClientAppCertificateFromURL:@“<certificate
URL>" forDRM:kVLM_FairPlay];

[VirtuosoLicenseManager setLicenseServerURL:@"https://myCastlabsServer.com/
license-server-fairplay/" forDRM:kVLM_FairPlay];

2) Enable our built-in CastLabs integration. This can also be done right after the above setup:

// CastLabs Configuration
[VirtuosoLicenseManager registerAVAssetResourceLoaderDelegate:
[CastLabsAVAssetResourceLoaderDelegate class]];

3) Implement the drmConfigForAsset: method of the VirtuosoDrmConfigDelegate, and regis-
ter that implementation with the custom AVAssetResourceLoaderDelegate. In our example, the
VirtuosoDrmConfigDelegate method is implemented in the app delegate, but you can put this
method into any logical component in your architecture as you see fit:

[CastLabsAVAssetResourceLoaderDelegate setDrmConfigDelegate:self];

...

#pragma mark - VirtuosoDrmConfigDelegate

- (VirtuosoDrmConfig*)drmConfigForAsset:(VirtuosoAsset*)asset
{
 // CastLabs Configured
 CastLabsDrmConfig *config = [CastLabsDrmConfig new];
 config.clUserID = @“<user id>”;
 config.clSessionID = @“<session id>”;
 config.clCustomerName = @“<customer name>”;
 return config;
}

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 19 CONFIDENTIAL - For Licensed Use Only

Extended Features

FastPlay: iOS
FastPlay is a feature which provides instantaneous playback of streaming videos. FastPlay eliminates
the frustrating time your user would spend waiting for the player to buffer enough video to start
playback. This provides a vastly improved experience when browsing your video catalog, and should
also be applied to popular and featured videos which you highlight in your app UI.

As soon as it seems your user might be interested in playing a given streaming video, such as when
that video is featured in your UI or when the user opens the detail page of a video, you should construct
a FastPlay-enabled asset. You do not need to add FastPlay-enabled assets to your download queue.
The SDK will immediately download and parse that manifest, and download the opening few seconds
of the video. If the user then chooses to hit "play," you initiate playback of the FastPlay-enabled asset
just as you would for an asset that had been added to the download queue. The opening seconds of the
video play instantly, because they have already been downloaded to the local device, and when those
opening seconds are exhausted the player automatically and seamlessly transitions into the buffered
online stream. This allows your player to buffer a substantial amount of the video, with little or no wait to
start playback.

If you have implemented even the most basic download features of the Penthera SDK, you can
FastPlay-enable your application with very simple code. You construct the asset in the same manner as
for an asset you wish to add to the download queue, except you set a flag to enable FastPlay, and do
not add that asset to the download queue.

For example, simply enable FastPlay on your VirtuosoAssetConfig, which you use to create your
VirtuosoAsset:

VirtuosoAssetConfig *newAssetConfigForFastPlay = [[VirtuosoAssetConfig
alloc] initWithURL:myAssetURLString assetID:myAssetID
description:myDescription type:kVDE_AssetTypeHLS];

//enable FastPlay
[newAssetConfigForFastPlay setFastPlayEnabled:YES];
//disable offline playback (optimizes readiness if not also needed for
offline playback)
[newAssetConfigForFastPlay setOfflinePlayEnabled:NO];
//set other config settings as necessary

VirtuosoAsset *myAsset = [[VirtuosoAsset alloc]
initWithConfig:newAssetConfigForFastPlay];

Hold the asset reference in your code, and the SDK will silently prepare it for FastPlay. When the user
wants to start playback, check the asset to see if it is FastPlay-ready, and if so you initiate playback
with the same code you would if the asset was from the download queue. See for Play Downloaded
Content: iOS additional details.

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 20 CONFIDENTIAL - For Licensed Use Only

TIP
For the fastest readiness with FastPlay, also disable offline playback on the Virtu-
osoAssetConfig when you create the asset. If the asset does not need to be
downloaded for offline playback, this allows the engine to skip some steps and also
optimizes bandwidth usage.

If the user has requested playback so soon that FastPlay is not yet ready, you simply fall back to
playing the video direct from the online manifest as you would have without FastPlay.

if ([myAsset fastPlayReady]) {
 //initiate playback as you would for a downloaded asset
} else {
 NSString *onlineManifestURL = [myAsset assetURL];
 myAsset = nil;
 //now initiate playback with the online manifest URL
}

That is all that is required. The fastPlayReady flag on the asset is sufficient to know whether
FastPlay preparations are complete when your user presses a button to start playback.

Auto-download and Penthera Playlists
The Auto-download feature allows you to define any set of content as a playlist, and as certain trigger
events occur (e.g., the user finishes with one item in the playlist), another item will automatically be
downloaded for them. Using Auto-download is an easy way to keep desirable content available on your
users' devices.

You might engage Auto-download when your user chooses to download any episodic content, or
provide the option after they have watched an episode of a series. You may provide an opt-in or opt-out
approach. However you integrate the feature with your user experience, it becomes easy for the user to
start following a series of content.

For episodic seasons, workout videos, news segments, movie trilogies, and other serial content, the
next item defaults to the subsequent episode. You can even append dynamically to a playlist as new
episodes are released, so Auto-download works for active series as well as completed seasons & con-
tent. Regardless, it is easy to provide a simple toggle in your UI to enable and disable Auto-download.

While there are various configuration parameters to tweak Auto-download behaviors, our default set-
tings cover most needs. The Auto-download feature does not require server-side integration with the
Penthera Cloud. The required code is minimal and is only in the client app. If you have episodic content
defined in your catalog you already have all the necessary metadata.

All your client app needs to do is:

• Register lists of Asset IDs with the VirtuosoPlaylistManager in our client SDK
• Implement the single-method VirtuosoPlaylistManagerDelegate to allow the SDK to resolve

each asset ID into a VirtuosoAssetConfig when it is time to download the next asset in the
playlist

Behavioral Modes
Penthera's iOS SDK 4.2 introduced modes of playlist behaviors (the Penthera Android SDK will intro-
duce modes at a later time). The original playlist behavior is now referred to as "Auto-download playlist
mode," which downloads sequential episodic content after the user watches and deletes previous

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 21 CONFIDENTIAL - For Licensed Use Only

episodes. A new mode, called "FastPlay playlist mode," manages a set of FastPlay-only assets so that
streaming playback starts of these assets are greatly accelerated.

Let us first explore how Auto-download mode works.

Auto-download playlist
Once an Auto-download playlist is defined in the app, when an asset contained in the playlist is
watched and then deleted, the next available asset which is not already on the local device is queued
for download. When Auto-download mode is enabled, each watched & deleted asset in a playlist will
queue another unless one of the following occurs:

• the user has reached the end of the playlist,
• the user cancels the next asset while it is downloading,
• the user deletes the asset without watching it,
• the asset expires without being played (see note two below), or
• the user manually disables the Auto-download feature in your UI (if you give that option)

This leads to an intuitive experience for the user. In fact, if the user manually downloads more than
one asset from the same active playlist, the SDK will seek to keep that many episodes of the playlist
available locally.

If the user has watched the last item in an Auto-download playlist, when you add a new item to that
playlist the new episode will immediately queue for download, so the user can follow an active series
with no further effort!

NOTE
Note one: Prior to iOS SDK 4.2 a delete-all call on the API would not trigger auto-
downloads. As of 4.2 the delete-all will trigger auto-download if other conditions allow.

NOTE
Note two: Any expiry without playing the asset will never trigger an Auto-download.
When a played asset reaches its expiry-after-play deadline, Auto-download can down-
load an item from a playlist.

However, in this release of the Auto-download feature if a played asset happens
to reach its expiry-after-download deadline before its expiry-after-play deadline, Auto-
download does not engage. In a future release the design will simplify slightly such
that any expiry of a played asset can trigger Auto-download.

Implement the VirtuosoPlaylistManagerDelegate
The VirtuosoPlaylistManagerDelegate requires one method which allows the SDK to translate
the desired episode Asset ID into the VirtuosoAssetConfig which will be used to instantiate the Vir-
tuosoAsset. You need only implement the delegate and register it with VirtuosoPlaylistManager,
and your delegate code will be called whenever appropriate.

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 22 CONFIDENTIAL - For Licensed Use Only

class MyPlaylistDelegate : NSObject, VirtuosoPlaylistManagerDelegate {

 /*
 * This method is called by PlaylistManager when it needs next item in
a playlist
 */

 @objc func asset(forAssetID assetID: String) ->
VirtuosoPlaylistDownloadAssetItem {

 var config: VirtuosoAssetConfig?

 var myAssetInfo: MyAssetInfo?

 guard let myAssetInfo =
MyCatalogAccessor.instance().retrieveInfo(asset: assetID) else {
 return VirtuosoPlaylistDownloadAssetItem(option:
.PlaylistDownloadOption_TryAgainLater);
}

 config = VirtuosoAssetConfig(url: myAssetInfo.manifestUrl,
 assetID: assetID,
 description: myAssetInfo.desc,
 type: .vde_AssetTypeHLS)

 guard let assetConfig = config else {
 return VirtuosoPlaylistDownloadAssetItem(option:
.PlaylistDownloadOption_SkipToNext);
 }
 return VirtuosoPlaylistDownloadAssetItem(asset: assetConfig);
 }

}

Your delegate implementation should be registered with the SDK, likely during app launch in your
AppDelegate:

VirtuosoPlaylistManager.setDelegate(myPlaylistDelegate)

Register a Playlist
Now that you have a VirtuosoPlaylistManagerDelegate, you simply need to declare playlists
when appropriate. To register a playlist with the SDK:

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 23 CONFIDENTIAL - For Licensed Use Only

func createPlaylist(_ playlistName: String, assetList: [String]) -> Bool {
 do {
 //auto-download config
 let cheersSeason3Config = try VirtuosoPlaylistConfig(
 name: "CHEERS_S3_PLAYLIST",
 playlistType:
.vde_PlaylistType_AutoDownload)

 //create playlist
 self.playlist = try VirtuosoPlaylist.create(
 cheersSeason3Config,
 withAssets: ["CHEERS-S3-E1",
 "CHEERS-S3-E2",
 "CHEERS-S3-E3"])
 return true
 } catch let error as NSError {
 //handle the error
 print(“Playlist create failed \(error.localizedDescription)“)
 return false
 }
}

Once the playlist is registered, if the user downloads, watches and deletes episode one, the SDK will
automatically download episode two, and so on.

NOTE
It is also possible to define a playlist at the same time you create a new asset. In
that case you attach the VirtuosoPlaylist to the VirtuosoAssetConfig you
are going to use to create the VirtuosoAsset, and when that VirtuosoAsset is
created, it will also register the playlist with the VirtuosoPlaylistManager for you.

Grow a Playlist
To add an episode to an existing playlist:

DispatchQueue.global(qos: .background).async {
 guard let playlist =
PlaylistManager.instance().find("CHEERS_S3_PLAYLIST") else { return }

 playlist.append(["CHEERS-S3-E4"])
}

TIP
For active seasons of episodic content, use the append feature when a new episode
is available. If the user is caught up on the existing episodes, the new episode will
automatically download to their device!

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 24 CONFIDENTIAL - For Licensed Use Only

FastPlay playlist mode (iOS-only)
The FastPlay playlist mode allows use of the playlist features to automatically apply FastPlay accelera-
tion to a set of assets (not for downloading the entire asset). You might use this to FastPlay-enable
lists of assets you have highlighted as recommended items for the user. As they browse the list of
recommended items, FastPlay will prepare the next item so it is ready to start streaming instantly when
they reach it. The next item in the playlist is processed for FastPlay enablement as soon as the user
begins playing the previous item.

Note that assets intended for use in this manner must have their VirtuosoAssetConfig configured for
FastPlay (see info about how VirtuosoPlaylistManagerDelegate constructs VirtuosoAssetConfig instan-
ces for your playlist assets).

func createPlaylist(_ playlistName: String, assetList: [String]) -> Bool {
 do {
 //fastplay playlist config
 let featuredItemsPlaylistConfig = try VirtuosoPlaylistConfig(
 name: "FEATURED_ITEMS_PLAYLIST",
 playlistType: .vde_PlaylistType_foo)

 //create the playlist
 self.featuredItemsPlaylist = try VirtuosoPlaylist.create(
 featuredItemsPlaylistConfig,
 withAssets: ["avengers-endgame",
 "sherlock-holmes",
 "iron-man"])
 return true
 } catch let error as NSError {
 //handle the error
 print(“Playlist create failed \(error.localizedDescription)“)
 return false
 }
}

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 25 CONFIDENTIAL - For Licensed Use Only

What Next?

Browse through the example projects in the Tutorials directory of the SDK distributions. The ReadMe
files explain what capabilities are covered by each example. The examples are available in various
programming languages, and can easily be built & run in your IDE. When running the examples, use
the demo/development keys and URL we have provided you for the Penthera Cloud.

In the SDK distribution, look for additional API details in the code-level documentation (javadoc for
Android, header docs for iOS).

The following publications may also be of interest. These can be read online in the Penthera ZenDesk
instance, and are also available as PDFs.

201: Developing with the iOS SDK (PDF, Penthera online support)

202: Developing with the Android SDK (PDF, Penthera online support)

301: iOS SDK Beyond the Basics (PDF, Penthera online support)

302: Android SDK Beyond the Basics (PDF, Penthera online support)

203: Best Practices (Penthera online support)

312: Known Issues (Penthera online support)

Penthera 301: iOS SDK Beyond the Basics

Copyright © 2022 Penthera Partners 26 CONFIDENTIAL - For Licensed Use Only

https://docs.penthera.com/latest/201
https://support.penthera.com/
https://docs.penthera.com/latest/202
https://support.penthera.com/
https://docs.penthera.com/latest/301
https://support.penthera.com/
https://docs.penthera.com/latest/302
https://support.penthera.com/
https://support.penthera.com/
https://support.penthera.com/

	Penthera 301: iOS SDK Beyond the Basics
	Table of Contents
	Intermediate Topics
	Configure Device-level Download Behaviors: iOS
	Download Ancillary Files: iOS
	Enable/Disable Other Devices: iOS
	Push Notifications: iOS
	Availability Windows for Assets: iOS

	Advanced Topics
	Upgrading the SDK: iOS
	Observing Manifest Parsing: iOS
	Resolution-based Manifest Filtering
	Custom Manifest Filtering

	Digital Rights Management (DRM): iOS
	Apple FairPlay DRM
	Configure FairPlay DRM
	Utilize FairPlay Assets
	Extended FairPlay Server Requirements

	Google Widevine DRM: iOS
	Extended Widevine Server Requirements

	DRM Extensions: iOS
	Enhancing DRM with the VirtuosoLicenseManager
	Extending DRM with a VirtuosoLicenseManagerDelegate
	Extending DRM with a VirtuosoLicenseProcessingDelegate
	AVAssetResourceLoaderDelegate and AVContentKeySession
	Using BuyDRM or CastLabs DRM

	Extended Features
	FastPlay: iOS
	Auto-download and Penthera Playlists
	Behavioral Modes
	Auto-download playlist
	Implement the VirtuosoPlaylistManagerDelegate
	Register a Playlist
	Grow a Playlist

	FastPlay playlist mode (iOS-only)

	What Next?

