penthera

Penthera 202: Developing
with the Android SDK

Android SDK 5.0

January 17, 2022
Introduction to development of an application with the Penthera Android SDK 5.0. Covers architecture,

accessing the SDK, fundamentals, setup, and basic feature implementation.

Copyright © 2022 Penthera Partners

CONFIDENTIAL - Licensed use only

Penthera 202: Developing with the Android SDK penthera

Table of Contents

Welcome to the Penthera SDK ... e 3
Fundamentals of the Penthera SDK ... e 4
Typical INtegrationscoooiii s 4
SDK Architecture: ANArOidc...uiiiiii e 5
Supported Mobile OS VErSIONSccoeuuiiiiiiiii e 6
USEIS @nd DEVICESceiiiiieiiii ettt et e 7
ASSEL IAENETIEIS .ot 7

HOW Downloading WOIKSconiiiii i e e e e e aaeen 8
Coding WIth the SDKiiiiii e e e e e e e e et e e e et eeeeeannes 9
Accessing Penthera SDKs on Github / Archiva ..., 9
Download2Go Android SDK ... 9

Running the AnNdroid SDK DEMOoiiiiiiiiiiiiii e 9

Set up the AnNdroid SDK ... e e 10
Step-by-Step Android SDK Configuration Walkthroughcccooiiiii . 10

Android SDK Configuration in Detail ... 15
Instantiating the Virtuoso Engine on ANdroidoviiiiiiiiiiiiii e 25
Engine Startup: ANdroido.iiiiiiii e 25
Moving To and From Backgroundcooiiiiiiiii e 27

State Management: ANAroidoiiiiiiiiii e 30
IService Interface: ANArOidcooiiiiiiiiii e 30

Using Service Observers: ANAroidccioveuiiiiiiiiiiieeeiiie e 32

Using Broadcast Receivers: ANdroid ..o 36
Configuring Frequency of Download Progress Updatesccccccovvviiieiiiiinieeiinnnnnn. 40

HTTP Persistent Cookie Managementooiiiiiiiiiii e 41
RB/PIOQUANT ... ettt e e e 41
Configure Debug Logging: ANdroidooooiiiiiiiiiii e 42
Implementing BasiC FEaAtUIesooouuiiiiiiii e 44
Enable/Disable Device & Engine for Downloads: Androidcccoiiieiiiiniiiiiiineeeeien. 44
Queue an Asset for Download: ANAroidoooeuuiiiiiiiiiii e 45
Pause/Resume Download: ANroideiiiiiiiiiimiii e 46
Cancel a Download: ANAroidouuueiiiiiiiiiiii e 48

LiSt ASSEtS: ANAIOIAvuiiiiiiiii ettt 48
Delete an Asset: ANAroidoiiiiii e 48
Delete All Downloads: ANAroidc..oeiuniii e 49

Play Downloaded Content: ANAroidcoouiiiiiiii e 49
Unregister Device: ANAroidcoooeiuiiiiiii e 50
TrOUDIESNOOtING ...t ettt 52
LA = L1 =Y 53

Copyright © 2021 Penthera Partners 2 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Welcome to the Penthera SDK

Welcome to the Penthera SDK developer guide. If you have a basic understanding of the Penthera plat-
form, and familiarity with mobile media apps in general, this guide should enable you to integrate our
Penthera SDK into a mobile app and make use of its core features. When you are done with this materi-
al we have advanced guides to help you enable expanded features which may be useful to your compa-
ny and your users.

We will start with a brief discussion of typical media ecosystem components, the architecture of the
Penthera SDK and how it fits into that media ecosystem, and then proceed with how to integrate our
SDK into your app. If you are entirely new to Penthera or to mobile media app ecosystems, you may
benefit from reading our Penthera 101: Introduction to Penthera Development document before pro-
ceeding here.

Copyright © 2021 Penthera Partners 3 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Fundamentals of the Penthera SDK

The SDK dev guide will demonstrate some basics of using the SDK, including how to run the sample
SDK app we provide, how to set up the SDK in your own development project, some fundamentals of
how the SDK is configured, how your code can observe the state of the engine and its downloads, as
well as some examples of the most common functions your app will use.

Demo code included in this guide and in the SDK demo app demonstrates common ways to use the
SDK. This is just a portion of the overall SDK functionality. After you're done looking through the demo
code, read our advanced topics and best practices guides, and have a look at the API itself to see what
else is available.

Typical Integrations

The Penthera Virtuoso SDK and Penthera Cloud (sometimes referred to as our "backplane") participate
within your ecosystem to provide Penthera's Download2Go features and more. Your team includes the
Virtuoso SDK within your mobile app, where you integrate the SDK with your application code via local
API calls. The Virtuoso SDK handles necessary communications with the Penthera Cloud.

Client applications usually integrate the SDK with other services which your infrastructure provides.
These frequently include:

Media Player

The Virtuoso SDK is designed to support integration with your media player of choice. When your app
is ready to play an asset which is in our SDK's managed asset download queue, or to play a Pen-
thera FastPlay-enabled streaming asset, we provide easy hooks to retrieve the appropriate reference
which your app provides to your media player.
We frequently encounter teams using standard players such as AVPlayer on iOS, ExoPlayer on An-
droid, as well as Bitmovin player and others. The SDK provides wrappers which make it easy to get
started with some of the standard players, as well as instructions on how to achieve deep integration
with most any player you may choose.

Media Catalog
Your application is responsible for interacting with your media catalog, where it retrieves asset infor-
mation for display in your user interface. When appropriate, such as to request an asset be downloa-

ded for offline playback, your app uses the asset information to instruct our SDK to manage the
download.

Content Distribution Network (CDN)

Virtuoso SDK is designed to transparently support various CDNs. Typically your app code retrieves
asset information from your media catalog, then provides asset URLs and other details (e.g., desired
bitrates and languages) to our SDK. This information is provided to our SDK when your code re-
quests our download engine to manage the download, and our SDK retrieves the asset from the
CDN. For asset types which use a manifest, our SDK retrieves the manifest from the URL you pro-
vide, parses it, and downloads the relevant components from the CDN.

User Authorization

Your application is responsible for interacting with your backend to perform any necessary user au-
thentication & authorization. Your application code will register devices to the Penthera Cloud through
our SDK, and will startup our SDK with an appropriate user identifier.

In support of various privacy regulations, we have no requirement for you to provide the Penthera
SDK or Cloud with any user-identifiable information. Your code may provide our SDK with user and
device identifiers which are only associated with real users within your own app code or authentica-
tion system. Our only requirement is that user and device identifiers are unique to those users and
devices. The user ID you use to startup our SDK may even represent a family unit instead of an indi-
vidual person.

Copyright © 2021 Penthera Partners 4 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Analytics

The Penthera Cloud collects information about the usage of our SDK in your apps. This information is
as anonymous as the user, device and asset IDs you provide to us. We provide some analytic infor-
mation to you within our backend web interface, and can also provide the raw data to you for further
analysis. We periodically look for patterns of anomalies in the backend data which can help us identi-
fy potential customer issues.

The Virtuoso SDK also allows you to send custom events from your app to our Cloud in order to aug-
ment the standard data we collect for you. Your app code can also retrieve many of our SDK events
on the device, if you choose to push those direct from the device to your own analytic engine.

Digital Rights Management (DRM)

The Virtuoso SDK provides out-of-box support for various popular DRM systems, including Apple
FairPlay and Google Widevine. The Virtuoso SDK automates the management of persistent/offline
DRM keys so that your users' assets are available for offline playback according to rules embedded
in the DRM keys and according to business rules you configure in our Cloud. Our SDK will attempt to
renew DRM licenses at opportune times during connectivity to ensure that they are as up-to-date as
possible

The SDK also provides several layers of APIs for coding to any custom DRM server or key manage-
ment requirements. Your team has easy access in the SDK to make the most typical modifications
required by third-party DRM servers, such as additional request headers, GET/POST parameters,
base-64 encoding/decoding, and JSON request/response bodies. For even greater customization the
SDK also supports powerful custom low-level access to the DRM interactions.

SDK Architecture: Android

This section provides an overview of the Android SDK architecture.

Server-to-Server Amazon
Interactions (optional) AWS 53 [*— Wr\tel Logs |
(Optional)
Read Logs
/ (Optional) Push -
Google Updates
Cloud [+ (Optional)
Messaging
(optional) Penthera Cloud
Download
Media
a1

CDN Sync

(Auth

Rules,

Logs) Virtuoso Service Launch | Ang:)iieos
Starter Boot
Keep
Status e Alive
updates
Read —| e Virtuoso Service
et Catalog o
Media Catalog Control & WrnWanage
— Feedback — ____ Media & DRV — [SNENSRNRRE-
Content Media
Virtuoso oy
) M~ " Provider RS
Authenticate Startup —— T | (Client APIs)
(Your users) P
Authentication & i) ’ . Read /
Authorization Media Player Get Media VirtuosoClientHTTPService Media &
DRM
Your Media Ecosystem Your Android App Penthera Android SDK

The SDK consists of seven components (for simplicity, not all components/interconnects are shown in
diagram):

 Virtuoso. This is your app’s main interface with the SDK. Provides interfaces to startup the Penthera

SDK, register the user device, manipulate the download queue, subscribe to feeds, and get the status
on the download service.

Copyright © 2021 Penthera Partners 5 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

+ Virtuoso Service. A service running in its own process. Downloads queued assets, deletes expired
assets, communicates with the Penthera Cloud services, and sends notifications to the enclosing
app. Operates either as a foreground service when possible or is started via WorkManager.

» Virtuoso Service Starter. A small Broadcast Receiver based class that starts the Virtuoso Service. It
monitors environmental events to ensure the service restarts when required, which helps provide ro-
bust behavior. Depending on circumstances the Starter will start the Virtuoso Service as a foreground
service, or schedule WorkManager tasks which will in turn start the service when appropriate.

S NOTE
Upon installation, apps first begin in a stopped state. In a stopped state, an app will
not receive any broadcast messages. This means that background services cannot
be automatically started, unless the app has first been launched by the user.

» Virtuoso Content Provider. Keeps track of events and all information regarding assets known to the
SDK.

 Virtuoso Client HTTP Service. A proxy which supports playback of segmented assets, e.g. HLS vid-
€o0s.

* Push Notification Receiver and Services
» ADMReceiver. A Receiver to handle the Amazon Device Messaging (ADM) Client broadcasts.
* ADMService. The Service which handles Amazon Device Messaging (ADM) messages forwarded

from the receiver.

* FcmlnstanceldService. Service which handles Firebase Instance Id token refreshes.

* FcmMessagingService. Service which handles the Firebase Cloud Messaging (FCM) notifica-
tions.

S WHY RUN AS SEPARATE PROCESSES?

Running the main download service in a separate process ensures that it cannot be
affected by any client side code. The service also has its own memory space, which
can be important depending on the assets being downloaded as it sometimes uses a
lot of memory buffers.

Supported Mobile OS Versions

The Penthera SDK supports the vast majority of currently shipping mobile devices. Our Android SDK
5.x supports development targeting Android APl 31 (Android 12) and above. If your app development
targets an API level 30 (Android 11) or earlier, continue to use our latest 4.x Android SDK. Minimum
Android OS version support is the same for both our 5.x and 4.x SDK. At this time the officially suppor-
ted mobile OS versions are:

* Android API 19 (Android 4.4) and Kindle Fire OS 5+ and greater

Earlier versions than these are not officially supported. If you wish to support earlier OS versions you
may want to try earlier versions of our SDK, and current versions of our SDK may sometimes still work
with recent unsupported OS versions.

We may attempt to answer questions about unsupported versions, but we cannot prioritize resources to

resolve new issues discovered on unsupported versions which are not also present on supported ver-
sions.

Copyright © 2021 Penthera Partners 6 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Users and Devices

To Penthera a “User” is a person, household, or other entity that owns a device. When you call the start-
up method on the Virtuoso SDK, your code must supply a UserlID.

The SDK uses its own internal logic to assign a unique DevicelD to the device. The SDK uploads this
pair (UserlD, DevicelD) to the Penthera Cloud, which associates the Device with the User. The Pen-

thera Cloud uses the user and device IDs to enforce business rules such as the “max download-ena-
bled devices per user” setting.

The External Device ID is an optional field we maintain for your convenience. When set by your code,
the external device ID will be reported to the Penthera Cloud with device registration and in device logs.
You may wish to use this for an ID which matches that device in your own backend systems.

The Penthera Cloud provides a convenient mechanism to use your External Device ID in lieu of Pen-
thera’s internal DevicelD. You can look up a device’s activity on the Penthera Cloud user interface using
the External Device ID. You can even perform a “remote-delete” (single asset) or “remote-wipe” (all as-
sets) from the Penthera Cloud using an External Device ID.

@ NOTE
Downloading becomes available on a device when the SDK is started. If you allow
some users to download and others not, based upon their login credentials, it is a good
idea to delay calling the SDK startup method until your enclosing app code has verified
that the user is a paying customer and/or download-enabled user.

When your app detects that a customer has transitioned from being a download-enti-
tled user to a non-download-entitled user, there are recommended two options. If this
transition is permanent, call the unregister method in the SDK to remove the device
from the account. This unregister will delete all previous downloads, remove the device
from the user account on the Penthera Cloud, and remove the device from your Pen-
thera billing calculations in future months. If the transition is temporary, call the shut-
down method on the SDK. Once the SDK is shut down, the user will not be able to play
downloaded assets, but the assets will not be deleted from the device so they can be
immediately available again once the SDK is started again with their same user. The
device will not impact billing if it remains in shutdown status through an entire billing
cycle.

A CAUTION
On Android there is no way to guarantee the internal device ID will remain the same if
the user uninstalls and reinstalls the app.

Asset Identifiers

Upon creation, each asset is assigned an internal identifier for use with the SDK, local to the device,
and also a UUID which is used in analytics reporting to the backplane. Each asset creation method also
contains a parameter allowing your code to provide an external string identifier for the asset, which is
used to associate the asset with its ID in your catalog. The external identifier is required, and it must be
unique to each asset.

Copyright © 2021 Penthera Partners 7 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

How Downloading Works

The Penthera SDK proceeds through the download queue from top to bottom, attempting to complete
each queued asset in order. For multi-segment assets, such as HLS and DASH, the engine will down-
load multiple segments from within the asset simultaneously, but will focus on segments from one top-
level asset at a time.

If a recoverable error occurs while downloading a file, the engine will immediately retry that file up to
two more times. Immediate retries of the same file in the current downloading asset are known as the
"inner retries". If the file continues to fail through each inner retry, the retry count for the asset is incre-
mented by one, and the engine moves on to the next available asset. If a fatal, non-recoverable error
occurs, the retry count is immediately set to its max.

After completing a pass through the entire queue, the engine will begin another pass if any items exist
which might still be downloaded. These could include any assets whose retry counts were incremented
in the previous pass, any assets which had non-permanent permission denials, or any new items added
to the download queue. On each pass through the queue the engine will attempt again to finish any
assets whose retry count has not reached the maximum number of attempts. These attempts are
known as the "outer retries". The SDK may also retry failed assets at other opportune times, such as
when the user returns to the app.

NOTICE

The default number of inner and outer retries is three, which we refer to as our "Rule of
Threes."

If files of an asset had experienced errors, but on subsequent attempts files on that asset are success-
fully downloaded, the retry count for the asset is reset to zero. This helps to ensure that transient errors
are less likely to cause a permanent asset failure. With many brief transient errors, such as in poor net-
work conditions, the retry count on an asset may rise and fall repeatedly.

TIP

@ A method exists in the SDK to manually reset the retry count on an asset, which will
cause the engine to attempt download of that item again without needing to delete it
from the download queue and re-add it. In iOS this is the clearDownloadRetry-
CountOnComplete: method on VirtuosoAsset, and in Android this is the clear-
RetryCount(assetld) method on the 1Queue interface.

0 DOWNLOAD MAY BEGIN BEFORE PARSING COMPLETES

As of the Penthera Android SDK 3.15.14 and iOS SDK 4.0, the engine can begin to
download segmented asset files before the manifest parsing is complete. This allows
downloads to begin sooner, but may result in parsing and downloading notifications ar-
riving in a different order than expected in the past.

Copyright © 2021 Penthera Partners 8 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Coding with the SDK

This section will provide details on various aspects of coding with the SDK, including adding the SDK to
your project, starting up the SDK, observing state, logging, and other topics.

Accessing Penthera SDKs on Github / Archiva

You have access to the Penthera repository at GitHub (https://github.com/penthera) where you can
download the latest SDK to access documentation, change notes, example projects, and more. You
may also access the released Android developer packages via Archiva (https://client-
builds.penthera.com/repository/releases/).

Download2Go Android SDK

The Android package contains:

* Android Developer Guide PDFs

+ Change List PDF Release notes for SDK versions

+ Tutorials Example projects in Kotlin and Java containing code for various important SDK functions.
An older SDKDemo project is also available.

+ java_docs The java docs for the SDK, which are an important source of information about the SDK,
especially some lesser-used features not covered elsewhere in documentation

TIP
@ The javadocs are an important source of knowledge which is frequently overlooked.

+ libs A directory containing debug and release versions of our SDK for inclusion in your own project
+ README.md High-level info about Penthera and the SDK

Running the Android SDK Demo

The Penthera Android SDK includes two versions of a reference Android app implementation, one writ-
ten in Java (SdkDemo) and one in Kotlin (SdkDemoKotlin). We provide this as a convenience so you
can see how to call the SDK to enqueue, configure, download, and play video. It uses public-domain
videos in a variety of formats, with and without DRM, all hosted by Penthera on Amazon Web Services
(AWS).

To build and run SdkDemo or SdkDemoKotlin:

1. In Android Studio select File > New > Import Project.

2. In the Select Project window, navigate to the CnCDemo folder of the deliverable and select the
build.gradle file.

3. Update the Config. java and/or Config.kt file with the URL, public key and private key of your
Penthera Cloud test or dev account.

NOTE

If you have not already received your test or dev account credentials, please con-
tact <support@penthera.com>.

4. If you intend to test with the optional Push Notification support, modify the provided google-
services. json and api_key . txt files to use Firebase Cloud Messaging and/or Amazon De-
vice Messaging. If you are not using Push Notification, remove the placeholder files and comment

Copyright © 2021 Penthera Partners 9 CONFIDENTIAL - For Licensed Use Only

https://github.com/penthera
https://clientbuilds.penthera.com/repository/releases/
https://clientbuilds.penthera.com/repository/releases/

Penthera 202: Developing with the Android SDK penthera

out or remove the relevant sections from the Android Manifest and the gradle build. These sec-
tions are detailed here: Push Notifications: Android.

5. Run or Debug the SdkDemo or SdkDemoKaotlin module in an emulator or on a device. Testing on
physical devices is preferred.

Congratulations! You now have a video-downloading app up and running. You are ready to develop
your own apps with the SDK.

o IMPORTANT
The Android demo app uses ExoPlayer. It will only play videos on Kindle devices run-
ning Fire OS 5 or greater. If you need to support earlier Fire OS versions, you will need
to use a different player. Penthera will be happy to help you with an implementation if
needed.

Set up the Android SDK

We provide a step-by-step guide to quickly walk you through each required step of adding and configur-
ing the Penthera SDK in an Android app. We also provide a detailed discussion of each portion of the
configuration, which we recommend reading and understanding thoroughly.

Step-by-Step Android SDK Configuration Walkthrough

This section contains step by step instructions to create all the necessary components to work with the
Penthera Android SDK. If you are interested in detailed explanations and alternatives, these are provi-
ded in Android SDK Configuration in Detail [15]. After following this step-by-step process, we recom-
mend you read the remainder of Coding with the SDK [9] and then implement your first app features as
described in Implementing Basic Features [44].

To configure the SDK you will perform the following simple steps:

» Add the SDK to an app, using gradle dependencies
» Declare SDK components in your AndroidManifest.xml
» Optionally implement a simple class to describe your DRM server to the SDK, if you are using DRM.

Let's get started:

Step 1: Create “hello world” app. (Skip to step 2 if you already have an app)

Create a new Android Project.

Provide the application name and package. Click Next.

Leave the default options alone; click Next.

Choose an icon to use in the app or leave the defaults; click Next.
Choose the kind of activity to create; click Next.

Set the name of your activity; click finish.

ok wh~

Step 2: Add libraries

In your project's bui Id.gradle file you should include a reference to the Penthera maven repository:

Copyright © 2021 Penthera Partners 10 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

allprojects {
repositories {
google()
mavenCentral ()
maven { url "https://clientbuilds.penthera.com/repository/releases/" }

}
}

SDK Release Component
Add the following implementation statement to the dependencies list in your build.gradle:

implementation ("com.penthera:cnc-android-sdk:5.0 D)

TIP
@ During development it is best to use our debug version, which provides debug-level
logging.

implementation ("com.penthera:cnc-android-sdk-debug:5.0

D)

Content Provider Component

The Content Provider is added to your project via gradle reference to a configuration plugin. This plugin
runs as part of the standard gradle build. It will generate a java class for the SDK content provider, and
will include a new gradle dependency which supplies a reference to the provider in the Android mani-
fest.

In your settings.gradle file you should include a reference to the Penthera maven repository in the
pluginManagement section:

pluginManagement {
repositories {
maven {
url "https://clientbuilds.penthera.com/repository/releases”
}
}
google()
mavenCentral ()
}
}

Then reference our configuration plugin in your plugins block:
id "com.penthera.virtuoso-sdk-configuration® version "1.0.0"

The generated provider can be found under the generated java folders under the manifest declared
package name, called AppContentProvider.

Copyright © 2021 Penthera Partners 11 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

@ NOTE
The Penthera configuration plugin version will be upgraded for SDK 5.x to better sup-
port Android 12 and various changes between gradle v4 and v7. If you are developing
with Android 12 tools, or upgrading from our SDK 4.x, and have any build dependency
issues, you may need to:

» ensure you include mavenCentral() in your repositories list for settings.gradle de-
pendencies, and
» check for availability of version 1.1.0 of our configuration plugin.

Player Support Component

Integration components are provided with the Penthera Android SDK to ease your configuration of play-
back with common players, including various versions of ExoPlayer and also Bitmovin Player. These
components are aimed to provide media-item/media-source configuration objects, easy DRM integra-
tion support, easier advertising integration, and support for ExoPlayer playlists. If you wish to use one of
these components, check the SDK release for available player support component versions and refer-
ence the desired component in your gradle config. For example:

implementation ‘‘com.penthera:cnc-exoplayer-2_12-support:5.0

AndroidX LiveData Support Component

If you wish to use AndroidX support for LiveData with the Penthera SDK, you should add the Penthera
support library for AndroidX functions:

implementation "‘com.penthera:cnc-android-androidx-extensions:5.0

Then in your code, you will create a live data factory object, either from an existing Virtuoso instance or
allow the factory to generate the instance and store it for use elsewhere. This step associates the facto-
ry with the lifecycle owner, where “this” is an activity or application implementing the lifecycle owner.

//option one:

Virtuoso virtuoso = new Virtuoso(context);
VirtuosoLiveDataFactory liveDataFactory =
VirtuosoLiveDataFactory.getlnstance();
liveDataFactory.createLifecycleWithVirtuoso(this, virtuoso);

//or, option two:

VirtuosoLiveDataFactory liveDataFactory =
VirtuosoLiveDataFactory.getlnstance();

Virtuoso virtuoso = liveDataFactory.createVirtuosoWithLifecycle(this,

context);

Once you have referenced the extensions library and configured a live data factory, you may use it to
fetch LiveData-derived objects to observe in your application:

AllAssetslLiveData assetData = liveDataFactory.getAssetList();
assetData.observe(getViewLifecycleOwner(), assets -> {

5

Copyright © 2021 Penthera Partners 12 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Refresh IDE Project

Once the appropriate components are referenced as above, sync the project in your IDE to pick up the
changes to your gradle config.

@ NOTE
AndroidX versus earlier support libraries

As of version 3.15.14 our SDK uses AndroidX dependencies. It will no longer build
against apps using support libraries and the android.arch package, and no longer
requires JetiFier if building against an AndroidX application.

Step 3: Add largeheap support

Adding the largeHeap flag to the application in the manifest is recommended to allow for best perform-
ance if you are downloading large files:

<application
android:al lowBackup=""true"
android:icon="@drawable/ic_launcher"
android: label="@string/app_name"
android:theme="@style/AppTheme™
android: largeHeap=""true'">

Step 4: Declare the Service starter

The Virtuoso service starter is a broadcast receiver which ensures the Virtuoso service starts on device
boot and keeps running in the background. You’ll need to add it to the application section of the Android
manifest, running in the main process:

<receiver
android:name="com.penthera.virtuososdk.service.VirtuosoServiceStarter"
android:enabled=""true"
android: label="VirtuosoServiceStarter'>

<intent-filter>
<action android:name="android. intent.action.BOOT _COMPLETED"/>
<action android:name="android. intent.action.QUICKBOOT_ POWERON"/>
<action android:name="com.htc.intent.action.QUICKBOOT_ POWERON"/>
<action android:name="android. intent.action.PACKAGE REMOVED" />
<data android:scheme="package"/>
</intent-filter>
<intent-filter>
<action android:name="android. intent.action.BOOT_COMPLETED™"™ />
<category android:name="android. intent.category.DEFAULT" />
</intent-filter>
</receiver>

Step 5: Implement & register IForegroundNotificationProvider instance

Your app code must include an implementation of our IForegroundNotificationProvider inter-
face, and register this in the Android Manifest using a meta data declaration with name: com. pen-
thera.virtuososdk.notification.provider.impl . This implementation creates the notifica-
tion instance which is required by Android OS to be available for services which run in foreground serv-
ice mode.

Copyright © 2021 Penthera Partners 13 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Your implementation should never return null for the notification, though you can repeatedly return the
same notification instance if desired.

An example implementation of the IForegroundNotificationProvider can be found in our exam-
ple projects within the SDK

An entry in AndroidManifest.xml could look like:

<manifest xmlns:android="http://schemas.android.com/apk/res/android” ... >

<meta-data
android:name="com.penthera.virtuososdk.notification.provider._impl"

android:value=""com.yourdomain.yourapp.YourNotificationProvider"/>
</manifest>

OPTIONAL Step 6: Declare a DRM license manager and provide it to the SDK

If you are securing your assets with DRM, the SDK requires you to provide a LicenseManager imple-
mentation so it knows how to work with your DRM server. You must implement a subclass from Licen-
seManager and register it with metadata in the Manifest so the SDK can find it.

This example implementation is configured to fetch Widevine licenses. At a minimum, implement the
getLicenseAquisitionUrl () for your license manager:

public class DemoLicenseManager extends LicenseManager {

@Ooverride

public String getLicenseAcquistionUri() {
String license_server_url = "https://proxy.uat.widevine.com/proxy";
/~k

Here you could modify the license server url as needed.
For example, you could access any mAsset and mAssetld member
variables:

String video_id = null;

if (mAsset = null) {
video id = mAsset.getAssetld();

} else if (mAssetld = null) {
video id = mAssetld;

}

if(1TextUtils.isEmpty(video _id)) {
license server_url += "?video_id="+video id +

"&provider=widevine_test";
}
*/

return license_server_url;

}
}

The SDK will look up the class name of your License Manager implementation under the metadata key
com.penthera.virtuososdk. license._manager. impl in the AndroidManifest. To override this
meta-data value you will need to add the tools namespace to your manifest xml, and then use the
tools:replace function to declare the name of your LicenseManager subclass.

Copyright © 2021 Penthera Partners 14 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

<manifest xmIns:android="http://schemas.android.com/apk/res/android"
xmIns:tools="http://schemas.android.com/tools™ ... >

<meta-data tools:replace="android:value"
android:name="com.penthera.virtuososdk. license._manager.impl"

android:value=""com.penthera.sdkdemo.drm.DemoLicenseManager"'/>

</manifest>

Android SDK Configuration in Detail

This section will explore each of the configuration elements of the Penthera SDK in detail, specifically
the necessary and optional AndroidManifest.xml elements, as well as some related code examples. We
recommend a thorough grasp of the material in this section before integration & debugging with the
Penthera SDK in your app.

Accessing the Android SDK with Maven

In your project's bui Id.gradle file you should include a reference to the Penthera maven repository:

allprojects {
repositories {

google()
mavenCentral)
maven { url "https://clientbuilds.penthera.com/repository/releases/" }

}
}

SDK Release Component
Add the following implementation statement to the dependencies list in your build.gradle:

implementation ("com.penthera:cnc-android-sdk:5.0)

TIP
@ During development it is best to use our debug version, which provides debug-level
logging.

implementation ("com.penthera:cnc-android-sdk-debug:5.0

D)

Content Provider Component

The Content Provider is added to your project via gradle reference to a configuration plugin. This plugin
runs as part of the standard gradle build. It will generate a java class for the SDK content provider, and
will include a new gradle dependency which supplies a reference to the provider in the Android mani-
fest.

In your settings.gradle file you should include a reference to the Penthera maven repository in the
pluginManagement section:

Copyright © 2021 Penthera Partners 15 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

pluginManagement {
repositories {
maven {
url "https://clientbuilds.penthera.com/repository/releases”
}
}
google()
mavenCentral)
}
}

Then reference our configuration plugin in your plugins block:
id "com.penthera.virtuoso-sdk-configuration® version "1.0.0"

The generated provider can be found under the generated java folders under the manifest declared
package name, called AppContentProvider.

S NOTE
The Penthera configuration plugin version will be upgraded for SDK 5.x to better sup-
port Android 12 and various changes between gradle v4 and v7. If you are developing
with Android 12 tools, or upgrading from our SDK 4.x, and have any build dependency
issues, you may need to:

+ ensure you include mavenCentral() in your repositories list for settings.gradle de-
pendencies, and
» check for availability of version 1.1.0 of our configuration plugin.

Player Support Component

Integration components are provided with the Penthera Android SDK to ease your configuration of play-
back with common players, including various versions of ExoPlayer and also Bitmovin Player. These
components are aimed to provide media-item/media-source configuration objects, easy DRM integra-
tion support, easier advertising integration, and support for ExoPlayer playlists. If you wish to use one of
these components, check the SDK release for available player support component versions and refer-
ence the desired component in your gradle config. For example:

implementation "‘com.penthera:cnc-exoplayer-2_12-support:5.0

AndroidX LiveData Support Component
If you wish to use AndroidX support for LiveData with the Penthera SDK, you should add the Penthera
support library for AndroidX functions:

implementation ‘‘com.penthera:cnc-android-androidx-extensions:5.0

Then in your code, you will create a live data factory object, either from an existing Virtuoso instance or
allow the factory to generate the instance and store it for use elsewhere. This step associates the facto-
ry with the lifecycle owner, where “this” is an activity or application implementing the lifecycle owner.

Copyright © 2021 Penthera Partners 16 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

//option one:

Virtuoso virtuoso = new Virtuoso(context);
VirtuosoLiveDataFactory liveDataFactory =
VirtuosoLiveDataFactory.getlnstance();
liveDataFactory.createLifecycleWithVirtuoso(this, virtuoso);

//or, option two:

VirtuosoLiveDataFactory liveDataFactory =
VirtuosoLiveDataFactory.getlnstance();

Virtuoso virtuoso = liveDataFactory.createVirtuosoWithLifecycle(this,
context);

Once you have referenced the extensions library and configured a live data factory, you may use it to
fetch LiveData-derived objects to observe in your application:

AllAssetsLiveData assetData = liveDataFactory.getAssetList();
assetData.observe(getViewLifecycleOwner(), assets -> {

5

Refresh IDE Project

Once the appropriate components are referenced as above, sync the project in your IDE to pick up the
changes to your gradle config.

@ NOTE
AndroidX versus earlier support libraries

As of version 3.15.14 our SDK uses AndroidX dependencies. It will no longer build
against apps using support libraries and the android.arch package, and no longer
requires Jetifier if building against an AndroidX application.

App Permissions: Android

The SDK uses various permissions which are injected into the Android manifest by the SDK. You do not
need to add these into your manifest manually, but for reference the SDK uses:

» android.permission. INTERNET: Required to access the network.

* android.permission.ACCESS NETWORK_ STATE: Required to determine the state of the net-
work, so the SDK can respond to network loss and return appropriately.

* android.permission_ACCESS WIFI1_STATE: Required along with network state to react to net-
work changes appropriately.

* android.permission.FOREGROUND_SERVICE: Needed for the downloader service to be able to
run as a foreground service since Android APl 28. Required for background downloading.

» android.permission.CHANGE WIFI_STATE: Needed to refresh the wifi connection if/when it
gets stale. Known Android issue in older devices. Allows for robust downloading.

» android.permission.RECEIVE_BOOT_COMPLETED: Required to allow the SDK to resume
downloads after a device reboot without user interaction.

* android.permission.READ_EXTERNAL_STORAGE / android.permission.WRITE_EXTER-
NAL_STORAGE: Limited to Android SDK API version 18 or less if using default app storage. API ver-
sions greater than 18 do not require this permission unless you plan to change the base storage fold-
er to one outside of the app protected space. The permission is required to write downloads to disk. If
you choose to use this permission then you must handle dynamic permission requests.

Copyright © 2021 Penthera Partners 17 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

* android.permission.QUICKBOOT_POWERON: This permission allows the SDK to restart and re-
sume downloads after a quick boot without user interaction. i.e. This occurs when the device is not
fully powered off but all services and applications are killed before it turns back on.

Content Provider: Android

In the recommended configuration the SDK generates and configures a content provider for your app.
The Authority used by the provider is the primary identifier for the app, which ensures that the download
service works for various purposes including sending broadcasts and for local database functions.

The generated provider, called AppContentProvider, can be found in the generated java folders under
the manifest-declared package name.

S NOTE
Contact Penthera Support if your app needs to customize the manifest entry for the
generated provider, customize the authority it uses, or otherwise manage the provider
which will be used by the SDK.

Download Service: Android

The download capability runs either as a foreground service or as an expedited WorkManager task, de-
pending on the current state of the application. When running in foreground service mode it can contin-
ue to download until the current work is complete, at which point it yields the foreground status and may
not be able to regain it. If it cannot regain foreground status then it runs In WorkManager mode. When
in WorkManager mode the service has a finite time limit in which it can operate. If downloads are not
complete at the point when the time expires then it reschedules itself for the next available slot to con-
tinue the required activities. The download capability processes downloads, communications with the
Penthera Cloud, or expiry processing.

Because the download capability runs in its own process, separate from the main app process, there
are important implications to understand about the download service process notifications. One implica-
tion is that an initial OS-level notification must be presented to the user before the foreground service is
allowed to run. Another implication is that subsequent notifications may cross process boundaries,
which is worth consideration within your app architecture and design.

Notification Before Service Startup

Android requires that a notification be displayed to the user for any foreground service being launched,
otherwise the OS will quickly kill the foreground service. Android may also require a notification be
available for display when the service is run as an expedited WorkManager task. The SDK will use the
same notification mechanism to satisfy both cases.

Startup of the SDK download service as a foreground service or via WorkManager tasks is performed
by the SDK's Service Starter component. The service will then request the notification instance from
your IForegroundNotificationProvider implementation (which should never return null) and
provide it to the OS as necessary. This satisfies the OS requirements, which allows the download proc-
ess to continue running. Note that your 1ForegroundNoti ficationProvider implementation must
be made available to our SDK via meta-data declaration in your AndroidManifest.xml, as covered in our
topic on setting up the SDK.

During app startup, when foreground service mode is always available, the SDK will verify the existence
of the notification and start the foreground service. In this case the foreground service will run continu-
ously until downloads are complete, and may then be terminated by the OS. Under other conditions the
service may instead be launched opportunistically by WorkManager as time is made available by the

Copyright © 2021 Penthera Partners 18 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK

penthera

OS. In that case downloads will progress whenever time is allotted to these tasks in WorkManager by
the OS, which may mean the downloads are sporadically interrupted and resumed. Depending on OS
implementations, Android may or may not display the notification as this occurs.

Client SDK Service Starter Service Android 05

Client SDK is in the client process.

Service Starter is in the starter process

Service is in the service process

1. Service not running
Broadcast Startup Message
get Motification
'ﬁith
getForeground ServiceNotification()
Broadcast startup intent
Display
matification while
checking for
downloads
1. Service already running
Startup checks
for service
The broadcast is not
sent if the service is
already available
Client SDK Service Starter Service Android 05

App startup ensures Service is running and verifies user notification exists

@ NOTE
With proper configuration of the Service Starter in your AndroidManifest.xml, booting
the Android device will message the Service Starter. If incomplete downloads are in
queue, the Service Starter will register expedited WorkManager tasks. This ensures
that after a device reboot downloads can resume without further user activity. For an
example see the Service Starter configuration in Step 4: Declare the Service starter

[13]

Copyright © 2021 Penthera Partners

19

CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

It is important that your implementation of getForegroundServiceNotification on ServiceStarter
always returns a valid notification when called. Each request the SDK makes to that method includes an
Intent which details the action taking place, and optionally also an asset. On initial startup the Intent
may be Null. Your implementation of the Service Starter may return the same notification instance each
time, if you choose, but should never return null. This is also true of your 1ForegroundNotifica-
tionProvider implementation.

A CAUTION
The Service Starter passes the natification to the Service across a process boundary.
The Android OS imposes limits on the size of data crossing the process boundary, so
be cautious with the size of any images used in this startup notification.

0 NOTICE
The requirement that the notification related to foreground service startup originate
within the app process is unique to that one notification, and is not required of any oth-
er notifications used by or generated by the Penthera SDK.

Status Update Notifications From The Service

Whenever the SDK download service is operating as a foreground service, your user may be notified
via updates to the original notification instance, even if the the main app Ul is in the background or stop-
ped. This allows your user to be notified when their download(s) complete, or with other status updates.
Some conditions now require our downloads to execute as WorkManager tasks, in which case it is
WorkManager that controls whether notifications are displayed. Some versions of Android 12 may opt
not to display these notifications when our download is operating in WorkManager mode, but our SDK
and your Notification Provider implementation must be ready to provide the notification to the OS if re-
quested.

Your implementation of the 1ForegroundNotificationProvider interface converts status updates
into a notification intent. Whenever requested, your code receives a status update, converts that into a
notification intent, and returns that notification intent so it can be displayed.

0 IMPORTANT
Prior to Android 12 and our SDK 5.x, there was an option to register a BroadcastRe-
ceiver in your AndroidManifest.xml to convert status events into notification instan-
ces, rather than using IForegroundNotificationProvider. As of APl 31 (An-
droid 12) this is no longer possible. If you used a BroadcastReceiver for this pur-
pose with an earlier version of our SDK, you must migrate to the Notification Provider
approach with SDK 5.x.

Notification Provider

You will implement our IForegroundNotificationProvider interface to process Service status
updates Intents into Notifications. Your IForegroundNotificationProvider implementation will determine

Copyright © 2021 Penthera Partners 20 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

which status updates are converted to user notifications, and it will perform the conversion. You config-
ure the SDK to use your IForegroundNotificationProvider implementation for processing Service status
updates by returning your implementation's Class from the getForegroundServiceNotification-
Provider method of your Service Starter. This method overrides the base VirtuosoServiceStar-
ter implementation, which otherwise returns null.

Service Starter Service NotificationProvider

Service Starter in starter process.

Service in service process.

During Startup

Start Intent with IForeg roundiotificationProvider
class

Service instantiates |ForegroundMotificationProvider
within Service process

During Nermal Operation

Request notification

¥

Return updated notification

"
b)

Motification is kept within a single process

Service Starter Service NotificationProvider

User updates via Service notifications, Option Two

Notice that user notifications are generated within the Service using your implementation of 1Fore-
groundNotificationProvider . Your provider will be instantiated within the Service process, along
with any dependencies it creates. It is important to bear this in mind as generating complex user notifi-
cation Intents within the Service can result in more classes being instantiated in the Service process,
duplicating more of those which are also used in the main app process, which can increase the overall
memory footprint for the application.

Copyright © 2021 Penthera Partners 21 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

E NOTE

Even though Android API 31+ no longer allows a manifest-declared broadcast receiver
for the purpose of creating user notifications from background download progress, you
may still wish to create a broadcast receiver to receive status updates from the down-
load service for other reasons. For example you may wish to receive broadcast up-
dates in your app to collect messages for a custom analytics engine. Your app code
has the option of using manifest-declared or the preferred context-declared receivers
for such support.

Note however that for the purposes of updating your Ul elements with download pro-
gress, it is recommended to use the associated content provider or the SDK's queue
observer rather than receiving broadcast messages for that purpose.

Broadcast Receivers: Android

The Penthera SDK utilizes broadcast messages in several ways. The SDK uses broadcasts internally to
pass events between its download process and its components in the main app process. The SDK re-
ceives broadcasts from the Android system to support some of its functions, such as ensuring down-
loads resume after a device reboot. The SDK also declares a number of events in its public interface
which your app can receive as broadcasts if useful.

The following receivers may be required or otherwise present in your manifest:
Internal Use Receiver

Internal-use messages are not for use by your app code. The messages are generated and handled
within SDK code, and the broadcast receiver is provided and configured (via manifest) by the SDK.

Service Starter Receiver

The SDK uses a Service Starter implementation (derived from the VirtuosoServiceStarter class)
to receive broadcasts from the Android system, such as when the device is booted or when the app is
removed from the device, and also to receive some internal-use SDK broadcasts. In the Android-
Manifest.xml of various example projects provided with the SDK you will find the Service Starter de-
clared to receive its required broadcasts, such as android. intent.action.BOOT_COMPLETED,
android. intent.action.PACKAGE_REMOVED, and virtuoso. intent_action.START_SERV-
ICE, among others. Ensure that your app's manifest declares the Service Starter receiver as shown in
Step-by-Step Android SDK Configuration Walkthrough [10], as failure to receive the necessary events
will impede important functions of the SDK.

App-use Receiver

Most of the broadcast messages exposed by the SDK for potential use in your app are related to events
your code can also receive via observers (see Using Service Observers: Android [32]) or even through
associated content providers. In most cases the observers and content providers are the preferred
mechanism, as the broadcast messages are not intended to be used for updating the application Ul.

One potential exception is to receive these SDK broadcast messages so that your app can pass events
to a third-party logging or analytics system. Whatever the reason, for your app to make use of the
SDK's public broadcasts the appropriate receivers must be declared either in context or within the appli-
cation manifest. See Using Broadcast Receivers: Android [36] for details of what broadcasts are avail-
able, and how to receive them.

Copyright © 2021 Penthera Partners 22 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

NOTE

Remember that since Android API 26, implicit android broadcasts are no longer permit-
ted within applications.

WorkManager Scheduling: Android

The Penthera SDK uses the Android WorkManager extensively. It is used in normal mode for schedul-
ing timed actions such as expiration, but also to request expedited tasks such as deletions. The SDK's
preferred processing of downloads occurs as a foreground service, but now also uses expedited Work-
Manager tasks to process downloads if foreground service mode is unavailable. WorkManager is de-
clared using the androidx.work package.

The SDK starts the WorkManager automatically using an initializer class, which is defined as a content
provider and added to the component manifest to ensure the manager is started early in the app lifecy-
cle.

The SDK is designed with the assumption that all WorkManager activities should take place within the
primary process of the application, such that any customization applied to the WorkManager will apply
to all jobs to be processed. The SDK therefore directs all timed activities into the primary process via a
content provider or via the RemoteWorkManager class.

The SDK, by default, declares a specialized WorkManager Initializer content provider class to ini-
tialize the WorkManager and perform the SDK specific actions. It uses the default configuration of the
WorkManager, but the manifest entry in the SDK sets the multiprocess flag to false.

S NOTE
To support Android 12 and use our SDK 5.x you must be using at least WorkManager
2.7

o IMPORTANT

The default WorkManagerinitializer is disabled by the manifest of the SDK to avoid un-
intentional changes to the default implementation flags without consideration. If you
have a need to use WorkManager in your app, please coordinate with Penthera so we
can help ensure a configuration that works for your app as well as for the Penthera
SDK.

S NOTE
If your application is using a WorkManager 2.1 or later Configuration.Provider please
contact Penthera Support for some additional tips on ensuring your provider is config-
ured as necessary to support the Penthera SDK.

Copyright © 2021 Penthera Partners 23 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Custom Work Manager

If a specialized version of the WorkManager is desired then it will need to be declared via a new Con-
tent Provider class, and not in an Activity or Service. Content providers are initialized in an order which
may be specified in a manifest, or otherwise is determined by the operating system. If your content pro-
vider starts the work manager before the SDK work manager initializer runs, then the SDK's work man-
ager initializer will use your already-running Work Manager instead of starting one. If your application
requires a workmanager initialization with different parameters than the SDK work manager initializer
would use, then your work manager Content Provider must be defined and the initOrder attributes
set to ensure that your work manager starts before the SDK work manager initializer runs.

Lines as below in the application manifest can be used to set the SDK initOrder to the value ofyour
choice, in this case, 2:

<provider
android:name="com.penthera.virtuososdk.data. imple.provider.Virtuos

oWorkManagerinitializer”
android:authorities="${applicationld}.VirtuosoWorkManager”
android: initOrder=2"

/>

A provider with a higher initOrder will be started first, for instance:

<provider
android:name="com.example.MyWorkManagerinitializer”
android:authorities="${applicationld}.MyWorkManager”
android:initOrder="10"

/>

Allow Playback of Segmented Assets via localhost on Android API 28+

When assets downloaded to the device are played back, they are delivered to the player via a localhost
connection (at 127.0.0.1) from an HTTP proxy server run by the SDK. This allows the player to treat the
offline content exactly the same as it would from an online URL. The proxy delivers content over unse-
cured HTTP, because delivering content locally to the player over HTTPS would use additional process-
ing and battery resources, and would require the player to validate a self certification. The proxy is de-
signed to only deliver content to localhost, so it cannot be used to stream the assets outside of the de-
vice.

In order to improve app security, Android APl 28 and later disables cleartext network support by default.
The following network security configuration will need to be added to the application in order to allow
local network connections over HTTP for playback:

In your Android Manifest:

<application

android:networkSecurityConfig=""@xml/network_security_config"
>

Security Config XML (res/xml/network_security config.xml):

<network-security-config>
<domain-config cleartextTrafficPermitted=""true">
<domain includeSubdomains="true'>127.0.0.1</domain>
</domain-config>
</network-security-config>

Copyright © 2021 Penthera Partners 24 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Instantiating the Virtuoso Engine on Android

Virtuoso has one constructor, which takes the current application context. Virtuoso can be instantiated
within any component where a handle on the context is available. Generally, each Activity interacting
with the Penthera SDK has one instance of Virtuoso, but you can use multiple instances within an activ-
ity, and your application can even hold a singleton reference for use everywhere, if required.

If a singleton instance is going to be used within the application, and stored in an Application derived
class, then it is highly recommended to lazy load the Virtuoso object within the first Activity. The first
reason for this is that when the Virtuoso object is created it performs checks on the service and starts
integrity checks on any stored content, so this can worsen the performance of app startup if it occurs
prior to construction of the first activity. The second, and most important reason, to not create the object
within the Application constructor is the multi-process nature of the SDK. It is important to consider that
the SDK is designed to use a background download service which runs in a separate process, and that
an Application class is created within each process of an application. Therefore, if you create the Virtuo-
so object within the Application it will result in creation of a Virtuoso instance within each process, in-
cluding within the download service process itself. This is unnecessary, and will result in multiple sets of
checks on the service and multiple sets of integrity checks on the content plus a larger memory footprint
for the app.

To initialize Virtuoso in the onCreate () of an Activity:

private Virtuoso mVirtuoso;

@Override

public void onCreate(Bundle savedlnstanceState) {
super.onCreate(savedlnstanceState);
setContentView(R. layout.main);
mVirtuoso = new Virtuoso(getApplicationContext());

}

Now that you know how to instantiate the Virtuoso object, read Engine Startup: Android [25] to learn
how to use it to log your user's device into the Penthera Cloud. Also ensure you understand the implica-
tions of Moving To and From Background [27].

Engine Startup: Android

Before the Virtuoso engine can perform any meaningful task (download files, process events, receive
subscription notifications), your app must cause the engine to register with the Penthera Cloud. This
registration is also known as "startup" of the engine. Typically you will want to carry out this registration
within a splash activity (if your users all have access to Download2Go features) or in a login activity (if
you only provide Download2Go features to logged-in users, or to users of a certain tier).

S NOTE
After you license the Download2Go SDK, you will be provided with a URL and keys
specific to your Penthera Cloud instances (development/staging, and production).
These URLs and keys will be used within your app to identify your app to the back-
plane when starting the engine. For building a proof of concept app, you are welcome
to use a shared Penthera-hosted cloud instance; ask Penthera for the URL and cre-
dentials to that instance.

To register with the Backplane, an app must call startup, with the following parameters:

Copyright © 2021 Penthera Partners 25 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

» aPentheraCloudUrl <String>: URL of your Penthera Cloud instance for development or pro-
duction.

» aUser <String>: Identifier (which you assign) to register the user on the Penthera Cloud. This
identifier is limited to 512 characters. It is common practice that the identifier provided to Penthera is
not traceable to your user's actual identity or to their account with your company, except by cross-
reference within your own identity management system.

+ aExternalDeviceld <String>: Optional device ID defined by your app. Useful for associating
each user device in Penthera Cloud with a device record in your own identity management system or
your own cloud user experience.

* aPublicKey <String>: Key used to identify your app on the Penthera Cloud (provided to you by
Penthera, and also available within your administrative web console on the Penthera Cloud)

* aPrivateKey <String>: Key used to sign all communications between the SDK and Penthera
Cloud (provided to you by Penthera, and also available within your administrative web console on the
Penthera Cloud)

+ aPushRegistrationObserver <lPushRegistrationObserver>: Optional listener to monitor
if registration for push messages through FCM or ADM messaging was successful. Refer to Push No-
tifications: Android for more details.

@ NOTE
After authenticating a user with the backplane, the SDK will reset if you call startup
again on the device with a different user. All media for the old user is deleted and all
the settings are reset to their defaults.

TIP

@ It can be beneficial to store your URL and keys somewhere securely in the cloud, and
retrieve them at runtime for use within your app. This would enable you to change
them without an app release if you ever desired, and can help keep them more secure.

An example of startup within a login activity:

Copyright © 2021 Penthera Partners 26 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

private Virtuoso mVirtuoso;

public void handleSuccessfulLogin() {

IBackplane backplane = mVirtuoso.getBackplane();
ifT (backplane.getAuthenticationStatus() ==

Common.AuthenticationStatus.NOT_AUTHENTICATED) {

// handle user login
// would need to listen for the registration success through
// an I1BackplaneObserver - see details below

mVirtuoso.startup(“https://backplane.server.com”,

}

“APPLICATION_USER™,

null, // could provide a device identifier here
“MY APPLICATION PUBLIC KEY™,

“MY APPLICATION PRIVATE KEY”,

new IPushRegistrationObserver(){}

);

else { /* proceed to main activity */ }

}

A

DEVICE STARTUP & SYNCING MAY IMPACT BILLING

Startup of the Virtuoso engine from a client device, and the periodic sync the engine
performs with the Penthera Cloud servers, are what identify a device as being "active"
in the Penthera ecosystem. The number of active devices in a given month impacts
Penthera resource utilization, and is the typical mechanism from which Penthera de-
rives its client billing.

The typical best practice for a client application is to leave users in the active state who
rely on download and other SDK features. For such users you would startup the Virtuo-
S0 engine soon after they launch or log in to your app, and you would leave the engine
running so it can manage background downloads and other features automatically.

If you limit download and other SDK features to a subset of your users, such as a pre-
mium user account, you will normally only startup the Virtuoso engine for those premi-
um users (and not for users who are unable to use Virtuoso SDK features).

Moving To and From Background

Once the Virtuoso engine is started, our SDK code running in your main app process instantiates inter-
nal observers which listen to various state updates from the download engine's foreground service
process. When your main app process moves to the background it is undesirable for those internal ob-
servers to continue running. In order for the SDK to disconnect those observers it needs your app code
to tell the SDK when your app goes to background and when it has returned to foreground. Calling the
Virtuoso SDK onResume and onPause methods will ensure that internal Ul-specific functions of the
SDK are paused when your app Ul is backgrounded and restored when your app Ul is brought to the
foreground again. Downloads and other non-Ul features of the SDK continue even though the onPause

is called.

Whether you have per-Activity instances of Virtuoso, or an app-wide singleton instance, you should en-
sure that your app code calls the SDK’s onPause method on those instances before moving into the

Copyright © 2021 Penthera Partners 27 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

background, and calls the SDK's onResume method on any instances when the SDK is needed again
in the foreground. The simplest way to achieve this is within any activity which accesses a Virtuoso in-
stance, call the Penthera SDK methods onResume and onPause from the similarly-named Android Ac-
tivity lifecycle methods, onResume and onPause., or within methods annotated @OnLifecycleE-
vent(Lifecycle.Event.ON_RESUME) and @OnLifecycleEvent(Lifecy-
cle_Event.ON_PAUSE).

onResume

Calling onResume () on the Virtuoso instance when your app is in the foreground ensures that the
SDK's internal observers are correctly linked to the relevant services. In the onResume implementation
of your Activity, you should call our onResume() method. If you are using any custom activity-specific
observers these should also be registered with the Virtuoso instance at this time:

@override

protected void onResume() {
super.onResume();
mVirtuoso.onResume();
mVirtuoso.addObserver(myCustomBackplaneObserver);
mVirtuoso.addObserver(myCustomEngineObserver);
mVirtuoso.addObserver(myCustomQueueObserver);

@ NOTE
With AndroidX you can include our AndroidX support library which will handle the life-
cycle events for you. (see our topics on project setup for how to include our AndroidX
support library)

If you use AndroidX but do not include our AndroidX support library into your project,
you would take similar steps to manage your observers within methods marked:

@onLifecycleEvent(Lifecycle._Event.ON_RESUME)

Copyright © 2021 Penthera Partners 28 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

A CALLING ONRESUME FROM THE BACKGROUND THROWS AN
EXCEPTION

The SDK onResume method attempts to start the HTTP proxy service so it is ready for
playback, but the HTTP proxy service can only be started successfully when the appli-
cation is in the foreground. An I 1 legal StateException will be thrown if onResume
is called when the app is in a background state. Recent versions of the Penthera SDK
protect against this exception crashing your app or otherwise bubbling up into your app
code. In the event that such an exception is thrown within the SDK while trying to start
the HTTP proxy service for playback, the SDK will try again when a playback URI is
requested.

Furthermore, there is a known issue in the application framework of Android 9.0 where
the Activity onResume method can be called by the OS prior to the app being put into
foreground mode. Left unchecked this would result in the I 1 legal StateException.
As stated above, recent versions of the Penthera SDK protect against this issue, and
the underlying issue is itself fixed in later android versions. You can read more about
the Android issue here: https://issuetracker.google.com/issues/113122354

Be aware that if any of your onResume code is not safe to run in the background, it is
recommended practice to wrap that code with a try/catch block if your app will run on
Android 9.0 or if your app implementation presents any other risk of calling the SDK
onResume when the app is in the background.

onPause

Call onPause on the Virtuoso instance when your app or Activity is about to move to the background,
so the SDK can unregister any internal observers it has linked to services. Although not strictly neces-
sary, it is good practice to unregister any of your own observers before calling onPause():

@Override

protected void onPause() {
super.onPause();
mVirtuoso. removeObserver(myCustomEngineObserver);
mVirtuoso.removeObserver (myCustomBackplaneObserver);
mVirtuoso.removeObserver(myCustomQueueObserver);
mVirtuoso.onPause();

NOTE

With AndroidX you would take similar steps within methods marked:

@onLifecycleEvent(Lifecycle_Event.ON_PAUSE)

Copyright © 2021 Penthera Partners 29 CONFIDENTIAL - For Licensed Use Only

https://issuetracker.google.com/issues/113122354

Penthera 202: Developing with the Android SDK penthera

0 ONPAUSE() UNREGISTERS YOUR OBSERVERS

Calling removeObserver(. . .) on a Virtuoso instance is the recommended way to
unregister a custom observer you create, but calling the onPause method on a Virtuo-
so instance will also unregister any custom queue, engine, backplane or subscription
observers you may have registered on that instance.

Even if you choose to rely on the Virtuoso onPause method instead of making explicit
calls to removeObserver(. . .) for each of your observers, any custom observers
used in your Activity must be added to the Virtuoso instance with a call to addOb-
server(...) in the Activity's onResume implementation to ensure they are attached
each time your user opens the Activity.

State Management: Android

Pausing or resuming all downloads can be performed through method calls on the I1Service interface.
This is also a source for the general state of the Virtuoso Engine, and for information about the connec-
tion to the Penthera Cloud.

Beyond these top-level engine states available upon request from IService, there are two ways to re-
ceive messages about a variety of state changes and events in the Penthera SDK. Observers are typi-
cally the preferred method, and the other is receiving Android Broadcasts.

Familiarize yourself with the two approaches, with what events are available through each, and select
the appropriate mechanisms for your use cases. A blend of approaches may be appropriate, rather than
using only one or the other.

IService Interface: Android

Instances of the 1Service interface can be created using the getService() method on your Vir-
tuoso instance. An instance of the 1Service interface allows you to:

» pause/resume all downloads
* retrieve the current Virtuoso Engine status
* retrieve network throughput data

0 IMPORTANT
The 1Service is not a singleton. Each call to the getService() method will return
a new instance. Note that in Kotlin the call is shortened to . service which looks like
a property accessor, but will still return a new instance each time it is called.

To perform IService functions the SDK must first establish a bound connection to the download serv-
ice process from within the main app process where your code is running. This connection is made
when your code calls the bind() method of 1Service. The bind call is required before other 1Ser-
vice methods will function. You should also call unbind() when you are done with the IService,
such as in the onPause method of an Activity.

Copyright © 2021 Penthera Partners 30 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

private int mServiceStatus;
private Virtuoso mVirtuoso;
private 1Service mService;

public void onCreate(Bundle savedlnstanceState)

! super.onCreate(savedlnstanceState);
mVirtuoso = new Virtuoso(getApplicationContext());
mService = mVirtuoso.getService();

e

protected void onResume()

{
super.onResume();
if(mService.bind())

mServiceStatus = mService.getStatus();

s

protected void onPause()

{
super .onPause();
mService.unbind();

}

The getStatus() method of IService provides an int which corresponds to values in Com-
mon .EngineStatus. Check the javadoc for complete codes, but these EngineStatus values in-
clude:

» Common.EngineStatus.IDLE

» Common.EngineStatus. DOWNLOADING
» Common.EngineStatus.PAUSED

+ Common.EngineStatus.BLOCKED

» Common.EngineStatus.ERROR

» Common.EngineStatus.DISABLED

» Common.EngineStatus. AUTH_FAILURE

Copyright © 2021 Penthera Partners 31 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

0 NOTICE
Notice there is no engine status of "not running." When the SDK bind() method is
called on 1Service, it will start the foreground Service process if it is not already run-
ning. In extreme operating conditions the Android OS might terminate the Service, so if
it has not already been restored the SDK restores the Service when it is needed by

your main app process.
Client SDK Service Starter Service Android 05

Client SDK is in the client process.
Service Starter is in the starter process

Service is in the service process

Service Binding

B
L

Determineas not
properly started

‘ Broadcast startup intent
+

get Matification
with
getForegroundServiceMotification()

Broadcast startup intent

Display
natification while
checkirng for
downloads

)

Client SDK Service Starter Service Android 05

IService binding ensures the Service is running

Using Service Observers: Android
The SDK provides several observers for use within your Activity and app. The observers allow your ap-
plication to get updates from the SDK, which among other things helps keep your views refreshed.

Observer Description

I1BackplaneObserver Observer notified when any communication with the Penthera Cloud (the "Backplane") has com-
pleted. Provides a callback method which receives the type of communication, the result code,
and any error string.

IEngineObserver Observer notified of changes in the download engine status, changes to the settings used by
the service, and when assets are deleted or expired.

1QueueObserver Observer notified of changes for the queue or assets within it. Notifies when downloads start
and end, when a download error occurs, and any queue changes.

1SegmentedAssetFrom- Observer notified of actions when a segmented asset manifest is parsed and the asset created.

ParserObserver

IPushRegistrationOb- Observer notified when Push Messaging registration takes place.

server

Copyright © 2021 Penthera Partners 32 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

In the following sections we will give more detail about three core observers you are likely to implement:
IBackplaneObserver, IEngineObserver, and 1QueueObserver.

Your implementations of any of these three observers can be registered with the Virtuoso object through
the addObserver(. . .) method, and removed with the removeObserver(. . .) method.

o IMPORTANT

When using observers in your Activity, it is important to ensure your observers are not
left registered with the Virtuoso instance when the user leaves the Activity. The best
practice is to make any addObserver(. . .) calls in your Activity onResume () imple-
mentation, and remove each observer in your Activity onPause () implementation with
a call to the Virtuoso object's removeObserver(. . .) method.

0 ONPAUSE() UNREGISTERS YOUR OBSERVERS

Calling removeObserver(. . .) on a Virtuoso instance is the recommended way to
unregister a custom observer you create, but calling the onPause method on a Virtuo-
so instance will also unregister any custom queue, engine, backplane or subscription
observers you may have registered on that instance.

Even if you choose to rely on the Virtuoso onPause method instead of making explicit
calls to removeObserver(. . .) for each of your observers, any custom observers
used in your Activity must be added to the Virtuoso instance with a call to addOb-
server(...) in the Activity's onResume implementation to ensure they are attached
each time your user opens the Activity.

Details of IPushRegistrationObserver are covered further in Push Notifications: Android, and de-
tails of ISegmentedAssetFromParserObserver are covered further in Observing Manifest Parsing
Results with ISegmentedAssetFromParserObserver: Android.

Also, see the example projects in the SDK for samples of observer usage. It is also useful to read the
description of these observers in the javadocs included with the SDK.

TIP

@ In addition to the Observer interfaces, the SDK provides a base class implementation
of the IEngineObserver and IQueueObserver interfaces. The base implementa-
tion of each interface method does nothing, which allows your observers to extend
from the base implementation and override only the methods you require.

IEngineObserver: Android

The Virtuoso engine notifies any registered 1EngineObserver of changes in the download engine
status, changes to the settings used by the service, and when assets are deleted or expired.

Copyright © 2021 Penthera Partners 33 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

An 1EngineObserver can be registered with the Virtuoso object through the addObserver(...)
method and removed with removeObserver(...).

Review the Virtuoso SDK javadoc for the Observers class to find complete documentation covering
the IEngineObserver interface. The status codes passed to each observer method are explained in
the javadoc of the Common class.

Examples of the IEngineObserver methods and status types include:

engineStatusChanged(int status) with status values such as Common.EngineStatus. DOWN-
LOADING, Common.EngineStatus.IDLE, Common.EngineStatus.PAUSED, Common.EngineSta-
tus.BLOCKED, and more.

settingChanged(int flags) with flag values such as Common.SettingFlag.SET-
TING_MAX_STORAGE, Common.SettingFlag.SETTING_HEADROOM, Common.SettingFlag.SET-
TING_BATTERY_THRESHOLD, and many more.

settingsError(int flags) with flag values such as Common.EngineBlockedReason.DISK_FULL,
Common.EngineBlockedReason.POWER, Common.EngineBlockedReason.NETWORK, Common.En-
gineBlockedReason.PERMISSIONS, and more.

backplaneSettingChanged(int flags) with flag values such as Common.BackplaneSetting-
Flag.SETTING_DEVICE_DOWNLOAD_ENABLED, Common.BackplaneSettingFlag.SET-
TING_MAX_DOWNLOADS_PER_ACCOUNT, Common.BackplaneSettingFlag.SETTING_DE-
VICE_DOWNLOAD_ENABLED, and more.

assetDeleted(String assetUUID, String assetlD)
assetExpired(lldentifier asset)
assetLicenseRetrieved(lldentifier asset, boolean aSuccess)

engineDidNotStart(String exceptionStringReason)

IQueueObserver: Android

The Virtuoso engine notifies any registered 1QueueObserver of changes for the queue or assets with-
in it, for example, when downloads start and end, when a download error occurs, and any queue
changes.

An IQueueObserver can be registered with the Virtuoso object through the addObserver(...)
method and removed with removeObserver(...).

0 DOWNLOAD MAY BEGIN BEFORE PARSING COMPLETES

As of the Penthera Android SDK 3.15.14 and iOS SDK 4.0, the engine can begin to
download segmented asset files before the manifest parsing is complete. This allows
downloads to begin sooner, but may result in parsing and downloading notifications ar-
riving in a different order than expected in the past.

Review the Virtuoso SDK javadoc for the Observers class to find complete documentation covering the
IQueueObserver interface. Most of the methods receive a reference to the relevant Asset, in the form
of the 1 ldentifier interface implemented by Asset.

Examples of the methods of 1QueueObserver include:

Copyright © 2021 Penthera Partners 34 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

engineStartedDownloadingAsset(lldentifier asset) Useful for updating the Ul to reflect
this asset is being downloaded.

o PENTHERA ANDROID SDK CAN NOTIFY DOWNLOAD START
MULTIPLE TIMES FOR SAME DOWNLOAD

Anytime the download of an asset in queue stops and restarts, the SDK will send an-
other DOWNLOAD_START broadcast and call engineStartedDownloadingAs-
set(lldentifier asset) method on any registered 1QueueObserver. To distin-
guish whether a given broadcast or observer notification is a NEW download versus
the resume of a previous download, your code should look at the value of getCur-
rentSize() on the asset in the notification. If that returns zero, it is a new download.
If it returns a non-zero value, the notification is for a resume of a previous download.
Recall that for broadcasts the asset will be contained in the extras on the notification.

Note also that due to required differences in download engines, the Penthera iOS SDK
behaves differently. On iOS the download start notification will only occur the first time
download begins for an item in queue, and not when downloads resume.

enginePerformedProgressUpdateDuringDownload(l ldentifier asset) With this method
your code can be notified of download progress, which can be retrieved from the provided Asset and
displayed in the user interface.

engineCompletedDownloadingAsset(lldentifier asset)

engineCompletedDownloadingSegment(lldentifier asset). Typically not useful for Ul up-
dates, but could be useful for logging or debugging.

engineUpdatedQueue() occurs with any change to the queue, such as an item added, removed, or
reordered.

engineEncounteredErrorParsingAsset(String assetld)
engineEncounteredErrorDownloadingAsset(lldentifier asset) When this is called, the

Asset status will reflect the most recent error, which can be retrieved from the getDownloadStatus()
method on the provided Asset. Here are some of the error conditions Virtuoso may attach to the Asset:

Error Condi- Description Results
tion
Invalid mime MIME type advertised by the HTTP server does not match SDK updates Asset’s status to AssetSta-
type the expected MIME type you supplied. This is usually a tus.DOWNLOAD_FILE_MIME_MISMATCH and
very important category of error for customers to increments its error count.

track. Often a MIME type of text/html results when the
server returns an error page. Otherwise, this result may in-
dicate your server is returning the correct file, but with a
different MIME than you expected. An example is when
developers expecting closed caption to be a form of text
file are surprised to find some of their manifests use mp4
files for closed caption data, which then arrive unexpected-
ly as video MIME types.

Observed file After the download completes, the size of the downloaded SDK updates Asset'’s status to AssetSta-
size disa- file on disk does not match the Content-Length supplied by tus.DOWNLOAD_FILE_SIZE_MISMATCH and
grees with HTTP server. increments its error count

expected file
size

Copyright © 2021 Penthera Partners 35 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Error Condi- Description Results
tion
Network error Some network issue (HTTP 404, 416, etc.) caused the SDK updates Asset’s status to AssetSta-
download to fail. tus.DOWNLOAD_NETWORK_ERROR and incre-
ments its error count
File system The OS couldn't write the file to disk. In most cases, the SDK updates Asset’s status to AssetSta-
error root cause is a full disk. tus.DOWNLOAD_ FILE_COPY_ERROR and in-

crements its error count

IBackplaneObserver: Android
The Virtuoso engine notifies any registered 1BackplaneObserver when the SDK has completed in-
teractions with the Penthera Cloud (the Backplane).

An IBackplaneObserver can be registered with the Virtuoso object through the addObserv-
er(...) method and removed with removeObserver(...).

These communications with the backplane are initiated within our SDK, and their result will be handled
by SDK code, so there is no direct requirement for you to observe backplane interactions in this way.
You may still wish to observe at this low level for debug logging, to feed a custom analytic engine, or as
an option to make certain Ul updates.

Receiving this callback might be useful when download enablement has been changed, a device was
registered or unregistered, a device name was changed, or if during development you want to log when
a backplane sync completed.

Review the Observers javadoc for documentation covering the 1BackplaneObserver interface. The
callback method parameters contain an int Common.BackplaneCal lbackType, an int Com-
mon.BackplaneResult, and a String error message if appropriate. See the javadoc of the Virtuoso
SDK Common class for descriptions of the list of possible BackplaneCal IbackTypes (e.g., REGIS-
TER and NAME_CHANGE), and for the possible BackplaneResul t values (e.g., SUCCESS, FAIL-
URE, and DEVICE_NOT_REGISTERED).

Using Broadcast Receivers: Android

Besides sending events to your app code through observers and callbacks, the SDK also sends system
broadcasts. You may optionally capture these system broadcasts with a broadcast receiver for use in
your app code, but there is no functional requirement for you to do so. Observers and content providers
are preferred over broadcast messages for the purpose of updating your Ul. The most common reason
customer apps register to receive these broadcast messages is if they are logging the SDK behaviors in
a third-party logging or analytics system.

@ NOTE
This section covers broadcast receivers from the perspective of how your code might
receive our SDK broadcasts, if desired. If you are interested in learning more about
how and why the Penthera SDK uses various broadcast receivers for internal purpo-
ses, see Broadcast Receivers: Android [22]

Receiving Broadcasts

As is customary with Android broadcast receivers, in order to receive the desired broadcast messages
you will implement a broadcast receiver and register an intent filter. The receiver must be declared ei-
ther in the application manifest, or in context within code.

To receive any of the broadcasts sent by the Penthera SDK, the action names in the declared receiver's
intent filter must be in the following format:

Copyright © 2021 Penthera Partners 36 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

CLIENT_PACKAGE_IDENTIFIER + *.”” + BROADCAST_NAME

where CLIENT_PACKAGE__IDENTIFIER is the same value specified for the com. penthera.virtuo-
sosdk.client.pckg metadata as declared in the AndroidManifest, and BROADCAST NAME is
one of the broadcasts declared by the SDK in Common . Java. Examples of the available broadcasts
from the Penthera SDK can be found in the javadocs, and in the discussions Broadcasts of Download
State: Android [37] and Broadcasts of Analytic Events [39].

Below is an example of a broadcast receiver declared in the Android manifest, registered to receive var-
ious download and playback events. In this example, the value of com.penthera.virtuo-
sosdk.client.pckg would have been declared elsewhere in the manifest to be "com.my.app.auth™:

<receiver android:name=""com.my.app.NotificationReceiver"
android:enabled="true"
android: label="NotificationReceiver"
android:process=:"notification_service'>
<intent-filter>
<action android:name="com.my.app.auth_NOTIFICATION_DOWNLOAD_START"/>
<action
android:name="com.my.app.auth_NOTIFICATION_DOWNLOAD_ COMPLETE"/>
<action android:name="com.my.app.auth.NOTIFICATION_DOWNLOAD_UPDATE"/>
<action android:name="com.my.app.auth.EVENT_ QUEUE_FOR_DOWNLOAD™" />
<action android:name="com.my.app.auth.EVENT_DOWNLOAD_ START" />
<action android:name="com.my.app.auth.EVENT_DOWNLOAD_COMPLETE" />
<action android:name="com.my.app.auth.EVENT_PLAY_START" />
<action android:name="com.my.app-auth.EVENT_PLAY_STOP" />
</intent-filter>
</receiver>

TIP
@ See the demo application for an expanded example of using notifications and events.

Broadcasts of Download State: Android

The diagram and table below show the different download states and the broadcasts that are generated
when moving between states. The javadoc for the Common class in the SDK documents the entire list of
possible download status broadcasts.

Copyright © 2021 Penthera Partners 37 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK

penthera

(onErrorCleared / onBlockCleared)

(onResume)

onError)

ERROR

\

[DOWNLOAD STOPPED

(onError)

IDLE

A

(onDownload)
[DOWNLOAD_START]

(getNextDownload)
[DOWNLOAD COMPLETE]

-

1 DOWNLOADING

DOWNLOAD UFDATE

(onPaused)
[DOWNLOADS_PAUSED

(onBlock)

Y

BLOCKED

Download Broadcasts

Broadcast Description
NOTIFICATION_DOWN- A downloaded has started, or resumed after being paused. The extras in the broadcast's
LOAD_START Intent will contain the number of assets in the queue, the asset that started downloading

and the status of the download engine.

NOTIFICATION_DOWN-
LOAD_STOPPED

A download has stopped. The extras in the broadcast's Intent will detail which asset, the
number of assets in the queue and the reason for stopping.

NOTIFICATION_DOWN-
LOAD_COMPLETE

A download has completed. The extras in the broadcast's Intent will detail which asset.

NOTIFICATION_DOWNLOAD_UP-
DATE

A progress update for a download. The extras in the broadcast's Intent will contain the as-
set and the number of assets in the queue.

NOTIFICATION_DOWN-
LOADS_PAUSED

A download was paused. The extras in the broadcast's Intent will contain the asset and the
number of assets in the queue.

NOTIFICATION_MANI -
FEST_PARSE_FAILED

When a new asset is queued for download by your app code, it is common practice to pro-
vide a manifest parsing observer to that method call (passed as an argument). If your app
is backgrounded and cleaned up while the manifest is parsing, the observer cannot be no-
tified. If this is important to your app implementation, this broadcast can be received as an
alternative notice that an asset has not been queued. The extras on the broadcast Intent
will contain the asset id for the asset which could not be queued.

Copyright © 2021 Penthera Partners 38

CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

o PENTHERA ANDROID SDK CAN NOTIFY DOWNLOAD START
MULTIPLE TIMES FOR SAME DOWNLOAD

Anytime the download of an asset in queue stops and restarts, the SDK will send an-
other DOWNLOAD_START broadcast and call engineStartedDownloadingAs-
set(lldentifier asset) method on any registered 1QueueObserver. To distin-
guish whether a given broadcast or observer notification is a NEW download versus
the resume of a previous download, your code should look at the value of getCur-
rentSize() on the asset in the notification. If that returns zero, it is a new download.
If it returns a non-zero value, the notification is for a resume of a previous download.
Recall that for broadcasts the asset will be contained in the extras on the notification.

Note also that due to required differences in download engines, the Penthera iOS SDK
behaves differently. On iOS the download start notification will only occur the first time
download begins for an item in queue, and not when downloads resume.

Broadcasts of Analytic Events

The Penthera Cloud logs a variety of SDK-related events which you can receive in server-side reports,
and perform analytics on them. You can even send custom events to our SDK which it will log for you in
our Penthera Cloud, where they will be available along with our standard events.

Alternatively, you may configure your mobile app to receive broadcast events for some or all of our
SDK's predefined broadcasts (see Broadcast Receivers: Android [22] for contextual information). Your
broadcast receiver may be registered in the manifest or in context. The demo application provides an
example of registering to receive a few events in the Android manifest (although in the demo code they
are unused in the broadcast receiver which receives them).

TIP

@ The timing of one event, the "app launch" event, can be influenced by the client appli-
cation. This event simply represents when the application Ul was launched. If the appli-
cation has not manually generated an app launch event by 5 seconds after the SDK is
started, the SDK will automatically generate the event itself.

The following code can be used if you wish to manually induce the creation of the "app
launch" event, so that it occurs at a particular time and place in your app code:

Common.Events.addAppLaunchEvent(getApplicationContext());

These broadcasts listed below are sent to support custom or third-party analytics, and they directly map
to log events recorded in the Penthera Cloud. See the javadoc for the SDK's Common class for com-
plete information. In each broadcast, the 1Event being reported is always available in the extras of the
broadcast's Intent, at the EXTRA_NOT IFICATION_EVENT key. The event object may contain additional
details about the event, such as the asset ID of the video it relates to.

Broadcast Description
EVENT_APP_LAUNCH A fresh application launch is detected
EVENT_QUEUE_FOR_DOWNLOAD The user has added a file to the download queue.
EVENT_ASSET_REMOVED_FROM_QUEUE The SDK has removed a file from the download queue.

Copyright © 2021 Penthera Partners 39 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Broadcast Description
EVENT_DOWNLOAD_START A file began to download, or resumed a download which was previously stopped .
EVENT_DOWNLOAD_COMPLETE A file download completed.
EVENT_DOWNLOAD_ERROR A file has stopped downloading due to too many errors.
EVENT_MAX_ERRORS_RESET A file previously stopped due to download errors has been reset and will continue

downloading.

EVENT_ASSET_DELETED A file was deleted.
EVENT_ASSET_EXPIRE An asset was determined to be expired.
EVENT_SYNC_WITH_SERVER A sync with the Backplane completed.
EVENT_PLAY_START A player has begun local playback of the asset.
EVENT-STREAM—_PLEAY—START This event appears in Common . java, but is not used by the SDK.
EVENT_PLAY_STOP A player has stopped local playback of the asset.
EVENT—STREAMPLAY—STOR This event appears in Common . java, but is not used by the SDK.
EVENT_PLAYBACK_INITIATED The player initiated the first playback of the asset from the SDK proxy.
EVENT_SUBSCRIBE The user has subscribed to receive updates to a feed.
EVENT_UNSUBSCRIBE The user has unsubscribed to receive updates to a feed.
EVENT_RESET The SDK has handled a remote kill or detected a reinstall of the client app..

PENTHERA ANDROID SDK CAN NOTIFY DOWNLOAD START
MULTIPLE TIMES FOR SAME DOWNLOAD

Anytime the download of an asset in queue stops and restarts, the SDK will send an-
other DOWNLOAD_START broadcast and call engineStartedDownloadingAs-
set(lldentifier asset) method on any registered 1QueueObserver. To distin-
guish whether a given broadcast or observer notification is a NEW download versus
the resume of a previous download, your code should look at the value of getCur-
rentSize() on the asset in the notification. If that returns zero, it is a new download.
If it returns a non-zero value, the notification is for a resume of a previous download.
Recall that for broadcasts the asset will be contained in the extras on the notification.

Note also that due to required differences in download engines, the Penthera iOS SDK
behaves differently. On iOS the download start notification will only occur the first time
download begins for an item in queue, and not when downloads resume.

Configuring Frequency of Download Progress Updates

You can configure the frequency at which your app receives notifications regarding downloads through
the 1Settings interface. You may specify the update frequency on a time basis or on a percent com-
plete basis. For Segmented Assets you may also specify update frequency based on how many seg-
ments have been downloaded.

ISettings settings = mVirtuoso.getSettings();
settings.setProgressUpdateByPercent(1)

.setProgressUpdateByTime(3000)
.setProgressUpdatesPerSegment(20)
.save(Q)

Progress Updates By Percent (Integer): Minimum percentage interval at which a broadcast should be
sent out. Set to 100 to disable updates based on % intervals. (default: 1)

Progress Updates By Time (Long): Minimum number of milliseconds that should pass before the
SDK sends out a broadcast regarding progress updates. Set to Long.MAX_VALUE to disable updates
based on timed intervals. (default: 5000)

Copyright © 2021 Penthera Partners 40 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Progress Updates Per Segment (Integer): Minimum number of segments that should complete down-
load before the SDK sends out a broadcast. (default: 10)

If multiple values are provided in the configuration, the SDK will not send out an update until the com-
bined settings are all met (i.e., at the latest opportunity).

The SDK guarantees updates are not sent out early, that is, no updates will occur within the configured
intervals but updates may sometimes arrive later than configured. Whether your code receives the
download progress updates via observer or broadcast receiver, the updates still rely internally on broad-
casts. Because broadcasts depend on Android delivery, you may observe some variation between the
times your code receives updates and the values you have configured.

Retrieve a setting: settings.getProgressUpdateByPercent();

Reset a setting: settings.resetProgressUpdateByPercent();

HTTP Persistent Cookie Management

The SDK installs a cookie manager within the Service process to persist cookies between executions.
This ensures that any cookies delivered during manifest responses will be correctly added to requests
during segment download. In most cases this will not interfere with any use of cookies in the main appli-
cation process, as Android does not share the cookie manager between processes. In particular, DRM
licenses and advertising reporting are executed via the SDK within the main application process, not the
SDK service process, so the SDK cookie manager will not manage relevant cookies on these types of
HTTP requests.

o IMPORTANT
If your application requires a custom cookie manager, and inserts this within the appli-
cation class, then your custom cookie manager may clash with the version used by the
SDK in its Service process. In that case the SDK cookie manager may be disabled by
entering the following meta data into the Android manifest:

<I-- Disable Penthera Cookie Manager -->
<meta-data
android:name=""com.penthera.virtuososdk.persistentcookiemanager.d
isabled”

android:value="true" />

R8/Proguard

It is always recommended to use R8/ProGuard on your release builds, and the SDK includes a pack-
aged proguard rules file to help with this.

The SDK is built using a very simple Proguard configuration that does not obfuscate many class names
or variables, especially none of those within the public API. This means that crash reports generated
with an un-obfuscated test build will contain full original class names. This is done to make debugging
and bug reporting easy for client developers.

The SDK also includes all functionality offered by the Download2Go product in a single library, even
though some applications will only use a subset of the features. It is therefore very important to apply a
more aggressive shrink ruleset to your release build to improve the final application size.

The rules file shipped with the SDK contains the minimal set of rules to protect the operations of the
SDK under Proguard. These rules are primarily based around places where observer classes are regis-

Copyright © 2021 Penthera Partners 41 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

tered via the Android manifest or used in broadcasts. The rules file will be included in your build by de-
fault if using Gradle, otherwise it can be found within the aar file, named proguard. txt .

Penthera does not explicitly silence any Proguard warnings. It is up to you to add appropriate Proguard
configuration for things you don't want to warn about. Some of the dependencies in the Penthera library
may produce Proguard warnings and are not errors. You will need to determine any such cases on a
per-application basis. Penthera previously shipped a Proguard configuration file which hid some warn-
ings from components, such as OkHttp, which historically caused build problems. It also included a
number of clauses to hide warnings from Java annotation classes. These have been removed upon re-
quest. We do not anticipate any impact from these changes on most client builds, but this will need to
be checked when updating from versions of the SDK prior to 3.15.12 as the previously shipped warn-
ings may potentially have masked missing clauses in the application proguard file.

A CAUTION
The Penthera Android SDK is built using the R8 toolchain. This can cause warnings
and minor issues if the client app is still being built with ProGuard. See our Penthera
312: Known Issues doc for details and resolutions.

Disabling R8 has been deprecated by the Android toolchain. We recommend updating
from ProGuard at the earliest opportunity.

Configure Debug Logging: Android

The SDK generates log output for debugging purposes which is configured using a custom logger and
log level filtering. The SDK logger uses the common log levels of DEBUG, INFO, WARN, ERROR that
map to the Android log levels of the same name, and a CRITICAL level, similar to Android assert that
will appear as an error log in the Android logs and cannot be filtered. There is also a VERBOSE log
level defined, but this is not accessible in any distributed build. The log level definitions can be found in
Common.LoglLevels.

With gradle you can build against our debug SDK build by appending -debug to the dependency
name for our SDK. The default log level for a debug build is DEBUG. This is also the minimum log level
accessible in our SDK build.

The default log level for a release build is “WARN?”. This provides enough debug output that problems
can be remotely diagnosed if the client application uses a production logging solution. WARN is also the
minimum log level accessible in a release build. The SDK helper will accept requests to configure lower
log levels but lower level outputs will not be generated by the release SDK.

The log level can be changed programmatically within the SDK if the client application wishes to reduce
logging during development, or to disable all logging for a production release. The requested level will
be distributed to all processes within the SDK.

The following line can be used to change the ongoing logging level for the SDK, which will be persisted
across application executions (where context is a valid android Context):

Common.LogLevelHelper.updatelLoglLevel (Common.LoglLevels.LOG_LEVEL_DEBUG,
context);

This command can be used for levels DEBUG, INFO, WARN, ERROR and OFF. The last of these
states will result in all logging other than critical log lines being removed. When the log level changes, a
single log entry will indicate that the new level has been set and all further logging will be at the new
level. If the client app desires no logging to be sent to the Android logger and ADB logcat then the
following line should be called as soon as possible after the SDK is instantiated for the first time:

Copyright © 2021 Penthera Partners 42 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

Common.LogLevelHelper.updateLoglLevel (Common.LoglLevels.LOG_LEVEL OFF,
context);

Copyright © 2021 Penthera Partners 43 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK pentFwera

Implementing Basic Features

Once you have learned the fundamentals of the Penthera SDK, and installed & configured the SDK in
an app, this section will step you through the code necessary to implement the most common features
in your app.

Enable/Disable Device & Engine for Downloads: Android

The Penthera Cloud tracks which devices are enabled for download, and enforces the global max
download-enabled devices per user parameter, which you may set via the Penthera Cloud
web admin Ul. The Penthera Cloud also offers an option to set the default state of new client devices to
enabled or disabled

The individual SDK instances “know” their own download-enabled status, because the Penthera Cloud
communicates it to them. An SDK whose download-enabled status is false can add assets to queue,
but will not download the queued assets.

You can request to change the download-enabled status for the current device as follows:

// create and register a backplane observer to know If the request succeeded
IBackplaneObserver mBackplaneObserver = new IBackplaneObserver () {
@Override
public void requestComplete(int callbackType, int result) {
// only checking for download-enablement changes
if(callbackType == BackplaneCal lbackType.DOWNLOAD ENABLEMENT CHANGE)

switch(result) {
case BackplaneResult.SUCCESS:
// Changed the “downloaded-enabled” flag
break;
case BackplaneResult_DOWNLOAD LIMIT_REACHED:
// User has already reached quota of devices.
break;
// other failure codes you may want to communicate to user
case BackplaneResult.DEVICE_NOT_REGISTERED: /*do something*/
break;
case BackplaneResult.INVALID_CREDENTIALS: /*do something*/
break;
case BackplaneResult.FAILURE: /*do something*/ break;

}
¥
¥

mVirtuoso.addObserver(mBackplaneObserver);
// Now we request the actual enablement change. This relies on having an
active

// network connection and the SDK being authenticated with the Backplane.

mVirtuoso.getBackplane() .changeDownloadEnablement(true); // true=enable,
false=disable

Copyright © 2021 Penthera Partners 44 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

TIP

It is also possible to enable / disable download on other devices associated with the
user.

Queue an Asset for Download: Android

Queueing an asset for download varies depending on the type of asset. In each case the IAssetMan-
ager instance is used, but the methods vary. The 1AssetManager instance is retrieved from your Vir-
tuoso instance.

Queue a single file (for example, an mp4)

The IAssetManager contains a method to create a single-file asset, and then the file is simply added
to the queue for download:

IAssetManager assetManager = mVirtuoso.getAssetManager();
IFile vi = assetManager.createFileAsset (
"http://some.server.com/media.mp4', // remote URL

"MY_CATALOG_IDENTIFIER™, // An asset identifier your app can
use
// to map this asset to your
catalog.
// Must be unique for each tracked
asset.
"video/mp4", // Expected asset mime type, for
validation
"{

// Additional metadata that SDK should store with the asset
\"title\":\"media title\" ,
\"desc\":\""media description\",
\"img\":\"http://myimage.png\"

s

assetManager.getQueue().add(vi);

Queue a segmented video, specifying a target bitrate

For segmented, manifest-based videos, there are various parameters to define (e.g., download URL
and bitrate settings) so the Penthera SDK can download the desired files of the asset. The SDK will
download and parse the manifest, identify the highest-quality profile whose bitrate does not exceed the
specified max bitrate, and then download all the fragments belonging to that profile.

The details for the desired asset can be provided using an asset parameter builder which is specific to
the manifest type (e.g. an HLS or MPEG-DASH). One of the builder parameters indicates whether the
SDK should automatically add the asset to the download queue when it completes parsing the manifest,
or allow your code to decide later if and when the asset should be added to the download queue. The
builder produces a configured parameters instance which can then be passed to one of our synchro-
nous or asynchronous methods on 1AssetManager to create the Asset instance.

The synchronous create methods should never be called from the Ul thread. With the asynchronous
create methods you may implement an 1SegmentedAssetFromParserObserver to receive the out-
come of the parsing. Within that observer you may add the parsed asset to the download queue if you
did not configure that to occur automatically.

The synchronous and asynchronous methods of the 1AssetManager interface to create/queue a mul-
ti-segment video are:

Copyright © 2021 Penthera Partners 45 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

* createHLSSegmentedAsset or createHLSSegmentedAssetAsync
» createMPDSegmentedAsset or createMPDSegmentedAssetAsync

See the javadocs to explore various other options, especially javadocs for IAssetManager, HLSAs-
setBuilder, and MPDAssetBui lder.

The following example code demonstrates creating an 1SegmentedAssetFromParserObserver,
using a builder to create the desired parameters instance, and passing that parameters instance to the
create method of IAssetManager. Note that "addToQueue" is configured to occur automatically, so it
is not necessary to manually add the parsed asset to the download queue in this observer implementa-
tion.

// This observer will receive notification when asset has been created
final 1SegmentedAssetFromParserObserver observer =
new ISegmentedAssetFromParserObserver() {
@Override
public void complete(lSegmentedAsset aSegmentedAsset, int aError,
boolean addedToQueue) {
iT (addedToQueue) {
// success

} else {

// something went wrong
}

}
};

HLSAssetBuilder hlsAsset = new HLSAssetBuilder();
hlsAsset.assetld("'"MY_CATALOG_IDENTIFIER™) // your
unique identifier

-manifestUrl (""http://some.server.com/manifest._m3u8™) // URL of
manifest

-downloadEncryptionKeys(true) // Download
encryption keys?

.desiredVideoBitrate(1927853) // max
desired bitrate to use

.assetObserver(observer) // just-
created observer; see above

-addToQueue(true) // Add to

download queue?
-withMetadata(''(netadata key:value bindings go here)'); // see above

IAssetManager assetManager = mVirtuoso.getAssetManager();
assetManager.createHLSSegmentedAssetAsync(hlsAsset.build(Q));

Supplying Integer.MAX_VALUE for the max bitrate parameter tells the SDK to select the highest bitrate
profile available. Supplying 1 for the max bitrate parameter tells the SDK to select the lowest profile
available.

Pause/Resume Download: Android

The Penthera Android SDK provides the ability to pause and resume individual assets, using pause-
Download(...) and resumeDownload(. . .) methods on the IAssetManager object.

An example of how this could be used in a catalog item detail Activity to handle pausing download of
the current detail view's asset follows:

Copyright © 2021 Penthera Partners 46 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

IAsset currentAsset;
IAssetManager mAssetManager;

// handlers for Ul pause and resume buttons
private void handlePause() {

iT (currentAsset !'= null && currentAsset.getDownloadStatus() !=
AssetStatus.DOWNLOAD PAUSED)

{

mAssetManager .pauseDownload(currentAsset);

}
}
private void handleResume() {

if (currentAsset != null && currentAsset.getDownloadStatus() ==
AssetStatus.DOWNLOAD PAUSED)

{

mAssetManager . resumeDownload(currentAsset);

}
}

Similar methods are available which pause/resume based on the asset ID instead of the asset instance.
To provide pause buttons for each item in your download queue view, pass the asset or ID correspond-
ing to the row the user wishes to pause or resume.

The SDK also provides methods on 1Service to pause/resume all downloads. This is useful for pro-
viding your user with a Ul button to pause/resume all downloads, but it is important to note that unlike
pause/resume of individual assets (which is synchronous and immediately updates the status of the as-
set), your code will require an observer to confirm completion of the asynchronous IService pause/
resume status change. An example of handling a pause/resume toggle in your Ul for all downloads fol-
lows:

IService mConnectedService;
private void handlePauseResume(Menultem item) {

if(getString(R.string.pause).equalslgnoreCase(item.getTitle().toString()){

try {

iT(mConnectedService !'= null)
mConnectedService.pauseDownloads();

} catch (ServiceException e) {
e.printStackTrace();

}

}

else
if(getString(R.string.resume).equalslgnoreCase(item.getTitle()-toString())){
try {
if(mConnectedService !'= null)
mConnectedService.resumeDownloads();
} catch (ServiceException e) {
e.printStackTrace();

}
}

We discussed the "master switch" in Enable/Disable Device & Engine for Downloads: Android [44],
which is not the recommended method for providing your user with a pause/resume all asset button.

Copyright © 2021 Penthera Partners 47 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

The master switch might be useful if you want to programmatically disable downloads such as during a
delinquent account payment status for the user.

Cancel a Download: Android

Canceling a download is the same as deleting the asset from the device, even if the asset has not yet
completed download.

The SDK provides a simple method to delete an asset. This works the same whether the item is waiting
to download, still being downloaded, or has completed download. Call one of the delete(. . .) meth-

ods on IAssetManager, providing either the asset instance or its asset ID. The 1AssetManager also
provides a deleteAll () method.

IAssetManager mAssetManager;

private void handleDelete(lAsset anAsset)

{

}
List Assets: Android

To retrieve a cursor on the assets previously downloaded and now stored on the device:

mAssetManager.delete(anAsset);

IAssetProvider downloaded = mAssetManager.getDownloaded();
Cursor c = downloaded.getCursor();

To retrieve a cursor on the assets in the download queue:

IQueue queue = mAssetManager.getQueue();
Cursor c = queue.getCursor();

@ NOTE
The 1AssetManager interface gives access to various cursors on assets managed by
the SDK. In addition to those shown in example code the interface provides methods
such as getDeferred() and others, used to easily retrieve subsets of assets in par-
ticular phases of management.

The most commonly used cursors are those from getDownloaded() and get-
Queue(), but be aware that assets will not appear in those if they are in parserQueue,
deferred, or expired phases. Note that assets which fail during parsing for any reason,
including permissions, will move to deferred rather than queued. The expired phase
may contain assets if you are using the SDK expiry mechanisms instead of, or in addi-
tion to, any DRM expiry. DRM expiry is not the same as asset expiry, so DRM expiry
alone will not move an asset to the expired phase.

The 1AssetManager is itself an 1AssetProvider, where calling getCursor () di-
rectly on the manager will return a cursor over all SDK-managed assets regardless of
their state.

See the javadoc for 1AssetManager to learn all the options and details.

Delete an Asset: Android

The SDK provides a simple method to delete an asset. This works the same whether the item is waiting
to download, still being downloaded, or has completed download. Call one of the delete(. . .) meth-

Copyright © 2021 Penthera Partners 48 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

ods on IAssetManager, providing either the asset instance or its asset ID. The 1AssetManager also
provides a deleteAl 1 () method.

IAssetManager mAssetManager;

private void handleDelete(lAsset anAsset)

{
}

Another example which also demonstrates retrieving the asset reference (as its base class I ldenti-
fier) by asset UUID, then passing the asset ID to the delete method:

mAssetManager .dellete(anAsset);

Ildentifier anAsset = mAssetManager.get(uuidString);
int anAssetld = anAsset.getld();

mAssetManager.delete(anAssetld);

Delete All Downloads: Android

There are two different concepts which people may think of as "deleting all downloads." If you want to
remove (or "flush") all assets from the download queue which are not yet downloaded, call the
Flush() method of the 1Queue interface:

mVirtuoso.getAssetManager() -getQueue() -flush(Q);

Alternatively, the IAssetManager has a deleteAll () method which deletes all queued and previ-
ously-downloaded assets.

Play Downloaded Content: Android

The SDK does not include a video player. It does, however, provide the mechanism for your media play-
er of choice to access the assets managed by the SDK. For both manifest-based and file-based assets
the SDK provides a playout proxy, a local HTTP proxy server, which sits between your media player
and the downloaded assets. The SDK provides a URL for each downloaded asset, which your code
passes to the player.

You can retrieve the correct reference to any asset by calling the getPlaybackURL() method on the
IAsset instance. The URL returned by getPlaybackURL() will point the player to the local proxy, at
a port owned by the SDK's VirtuosoClientHTTPService. Playback of manifest assets results in
your player retrieving both the manifest and its referenced asset files from the SDK's local proxy server.

A CAUTION
Downloaded manifest-based assets will not play correctly without accessing them
through the SDK proxy. While it may be technically feasible for your app code to ac-
cess downloaded file-based assets through their local file storage paths, we strongly
advise against this approach. This would invalidate certain metrics we collect on your
behalf, and would introduce other problems and inconsistencies. Access downloaded
assets for playback using the URL provided by getPlaybackURL() on IAsset, even
for file-based assets.

Example of playing back assets, where openlIntent contains the player and also holds the URI and
MIME type for the asset to be played:

Copyright © 2021 Penthera Partners 49 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

public static void play(Context context, lAsset asset)
{
Intent openintent = new Intent(android.content.Intent ACTION_VIEW);
try {
URL assetURL = asset.getPlaybackURLQ);
String mimeType = "video/*";
openlntent.setDataAndType(Uri.parse(assetURL.toString()), mimeType);
} catch (MalformedURLException e) {
throw new RuntimeException(''Not a playable file™);
by
// Register a "play start® event
Common_.Events.addPlayStartEvent(context,asset.getAssetld());
// Play the Asset
context.startActivity(openintent);

}

Unregister Device: Android

The Penthera SDK provides the ability to unregister the local or remote devices from the user's ac-
count. Unregistering a device will disassociate it from the user's Penthera Cloud account, delete all of
the downloaded assets from the device, and shutdown the Penthera SDK on that device. You will also
hear this function described as a "wipe" or "remote wipe." This occurs immediately on the local device,
or upon the next Penthera Cloud sync from the remote device.

TIP

@ Restoring the use of SDK functions on an unregistered device requires starting up the
SDK again on that device. Previously downloaded assets will have already been re-
moved.

You may choose for your app Ul to present a list of the user's devices, and allow the user to manage
the device list. See the javadoc for the 1Backplane interface for the full set of methods, including re-
trieving the list of user devices, changing a device nickname, enabling/disabling the SDK on a device,
unregistering a device from the user account, and more.

If your code wishes to unregister the current device, simply call unregister():
mVirtuoso.getBackplane().unregister();

If you wish to unregister one of the other devices on the user's account, once your user has selected
the desired 1BackplaneDevice instance from the list of devices, call unregisterDevice(...)
with the other device reference:

mVirtuoso.getBackplane().unregisterDevice(otherDevice);

Note that an unregister may not succeed, or may be delayed, based on factors such as connectivity of
the current and/or remote device. If you wish to observe the result of a device unregister, either local or
remote, you can do so with an 1BackplaneObserver. See the javadoc for IBackplane and the doc-
umentation IBackplaneObserver: Android [36] for details.

Copyright © 2021 Penthera Partners 50 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK penthera

@ DEVICES: DISABLED NOT DELETED

If devices you have remote wiped disappear from the device list in API calls, then all is
well. Our backplane does not ever completely delete devices. It just disables them and
disassociates them from whatever user ID they were last registered with when you call
unregister/remote wipe. We filter out such devices from the basic web and device API
call but those devices will still appear in the Penthera Cloud web admin GUI at present.
So if you remote wipe a device and it vanishes from the API call device list but not the
Penthera Cloud GUI, then all is working as expected.

Copyright © 2021 Penthera Partners 51 CONFIDENTIAL - For Licensed Use Only

Penthera 202: Developing with the Android SDK pentRera

Troubleshooting

The various SDK functions will log to your application log. If you are unable to determine the cause of
issues on your own, contact Penthera support for assistance via email to support@penthera.com.

To help resolve issues, we will usually need a description of the scenario, any code snippets you may
be able to provide, and ideally a complete debug-level log file from the application session in which you
experience the issue.

For issues related to communications off the device, such as errors during download, or failures of
methods which rely on communications with the Penthera Cloud, our support will also ask for a log of
the network communications captured with the Charles Proxy or other web debugging application. The
Charles app can be found at https://www.charlesproxy.com. A Charles log of the full session starting at
app launch is usually more helpful than a log of a partial session. Charles capture configuration can be
confusing, but Penthera Support can help achieve the ideal setup.

Copyright © 2021 Penthera Partners 52 CONFIDENTIAL - For Licensed Use Only

mailto:%20support@penthera.com
https://www.charlesproxy.com

Penthera 202: Developing with the Android SDK penthera

What Next?

Browse through the example projects in the Tutorials directory of the SDK distributions. The ReadMe
files explain what capabilities are covered by each example. The examples are available in various pro-
gramming languages, and can easily be built & run in your IDE. When running the examples, use the
demo/development keys and URL we have provided you for the Penthera Cloud.

In the SDK distribution, look for additional API details in the code-level documentation (javadoc for An-
droid, header docs for iOS).

The following publications may also be of interest. These can be read online in the Penthera ZenDesk
instance, and are also available as PDFs.

201: Developing with the iOS SDK (PDF, Penthera online support)
202: Developing with the Android SDK (PDF, Penthera online support)
301: i0OS SDK Beyond the Basics (PDF, Penthera online support)

302: Android SDK Beyond the Basics (PDF, Penthera online support)
203: Best Practices (Penthera online support)

312: Known Issues (Penthera online support)

Copyright © 2021 Penthera Partners 53 CONFIDENTIAL - For Licensed Use Only

https://docs.penthera.com/latest/201
https://support.penthera.com/
https://docs.penthera.com/latest/202
https://support.penthera.com/
https://docs.penthera.com/latest/301
https://support.penthera.com/
https://docs.penthera.com/latest/302
https://support.penthera.com/
https://support.penthera.com/
https://support.penthera.com/

	Penthera 202: Developing with the Android SDK
	Table of Contents
	Welcome to the Penthera SDK
	Fundamentals of the Penthera SDK
	Typical Integrations
	SDK Architecture: Android
	Supported Mobile OS Versions
	Users and Devices
	Asset Identifiers
	How Downloading Works

	Coding with the SDK
	Accessing Penthera SDKs on Github / Archiva
	Download2Go Android SDK

	Running the Android SDK Demo
	Set up the Android SDK
	Step-by-Step Android SDK Configuration Walkthrough
	Android SDK Configuration in Detail
	Accessing the Android SDK with Maven
	App Permissions: Android
	Content Provider: Android
	Download Service: Android
	Notification Before Service Startup
	Status Update Notifications From The Service

	Broadcast Receivers: Android
	WorkManager Scheduling: Android
	Custom Work Manager

	Allow Playback of Segmented Assets via localhost on Android API 28+

	Instantiating the Virtuoso Engine on Android
	Engine Startup: Android
	Moving To and From Background
	onResume
	onPause

	State Management: Android
	IService Interface: Android
	Using Service Observers: Android
	IEngineObserver: Android
	IQueueObserver: Android
	IBackplaneObserver: Android

	Using Broadcast Receivers: Android
	Receiving Broadcasts
	Broadcasts of Download State: Android
	Broadcasts of Analytic Events

	Configuring Frequency of Download Progress Updates

	HTTP Persistent Cookie Management
	R8/Proguard
	Configure Debug Logging: Android

	Implementing Basic Features
	Enable/Disable Device & Engine for Downloads: Android
	Queue an Asset for Download: Android
	Pause/Resume Download: Android
	Cancel a Download: Android
	List Assets: Android
	Delete an Asset: Android
	Delete All Downloads: Android
	Play Downloaded Content: Android
	Unregister Device: Android

	Troubleshooting
	What Next?

